Network Flow: Min Faculty Hire 1109

Also "airplane scheduling" problem.

· VIU has n classes scheduled

A professor can teach any class
 - classes have a start time and an end time and location
 CTi]→ start (CTi]→ end (CTi]→ loc

Also it takes T[i, j] time to walk from

location in to location J.

What is min # professors needed to teach all The classes?

Reduce to a disjoint - path- cover problem:

- 1. Construct the DAG G = (V, E)
 - V = classes i = l...n
 - $E = (i, j) \in E$ iff

C[i]→end + T[C[i]→loc, C[j]→loc] < C[j]→ start

travel time between class i and class f

2. Find disjoint path cover of G.

Each disjoint path corresponds to the class assignment that a single professor can do. D

ensuing projects to make profit.)

Our goal: determine which projects to

$$Take$$
 and which ones to
 $Skip$
So as to maximize total value (profit)
Constraint
if $x \in T$ then so is every y
where y has a directed path to x.
 $Far = \frac{-3}{4}$ $\frac{-5}{5}$ $\frac{-8}{7}$ $\frac{-5}{7}$ $\frac{-8}{7}$ $\frac{-5}{7}$ $\frac{-8}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-8}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-3}{7}$ $\frac{-5}{7}$ $\frac{-3}{7}$ $\frac{-3}{7}$

