Network Flow: Min Faculty Hire 1109
Also "airplane scheduling" problem.
vile has n classes scheduled

- \forall professor car teach any class
- classes have a start time and an end time and location. $C[i] \rightarrow$ start $\quad C[i] \rightarrow$ end $\quad C[i] \rightarrow 10 \mathrm{c}$

Also it takes $T[i, j]$ time to walk from location u to location v.

What is min \# professors needed to teach all the classes?

Reduce to a disjoint-path-coven problem:

1. Construct the DAG $G=(V, E)$

$$
\begin{aligned}
V= & \text { classes } i=1 \ldots n \\
E= & (i, \ddot{j}) \in E \text { iff } \\
& C[i] \rightarrow \text { end }+T[C[i] \rightarrow 10 c, C[j] \rightarrow 10 c] \leqslant C[j] \rightarrow \text { start }
\end{aligned}
$$

2. Find disjoint path cover of G.

Each disjoint path corresponds to the class assignment that a single professor can do.
11. 6 in Jeff Erickson's teat is Baseball Elimination - until Network Flow algorithms were inverted (and computer Scientists/maThematicians applied Rem to This problem) the only way to determine Elimination was brute force, or ad hoc arguments?
11.7 Project Selection

- Projects are related to one another by dependencies eg

"x must be done before y (if y is executed at all)"
Note: Erickson's text puts edge direction in opposite direction.

Each project has a value: positive = net profit

$$
\begin{aligned}
\text { negative }= & \text { net loss } \\
& \text { but might } \\
& \text { allow }
\end{aligned}
$$

ensuing projects to make profit.)

Our goal: determine which projects to
Take and which ones to
Skip
so as to maximize total value (profit)
Constraint
if $x \in T$ then so is every y where y has a directed path to x.

ensuing projects to make profit.)

Our goal: determine which projects to Take and which ones to

Skip
So as to maximize total value (profit) Constraint $x \in T$ then so are all y where $y \rightarrow x$

Take all jobs in same
partition as t.

$$
\text { Recall: Max Flow }=\text { Min Cut! }
$$

Claim: Let S, T be a min cut, T contains t (lake) Then taking all the projects in T has the following cost and value implications:
cutting across a red edge - bear the cost on this edged cuttiry across a green edge - forego the profit of this edge (project)

$$
\begin{aligned}
& \text { Total profit }= \underbrace{4+6+2+3}_{\begin{array}{c}
\text { always sum of } \\
\text { all positive } \\
\text { project values }
\end{array}}-\text { Cost of cut } \\
& 3+2+3+5
\end{aligned}
$$

See how it guarantees that if you "take" project with value 4 you must also "take" projects with value $-2,-3$

