Network Flow Applications cont'd 11.06 See Jeff Erickson's lext "Algorithms", Chap II.

11.1 Edge Disjoint Paths

What is The max number of edge disjointpaths from 5 to t in directed graph G. Haw to compute it using Network Flow algs: - give every edge capacity = 1. - Run Network Flow alg - the value of the flow is exactly the number of edge-disjoint s-t paths. Using Orlin's alg, this can be done in O(nm) Bot Fordet Fulkerson (generally O(nm²)) also runs nm iteratures, O(n)/iterature M O(nm) in this case since
- value of flow increases by ≥1 each iteration.
- total value is ≤ n-1

Reduce Max # edge-disjoint paths in undirected G to max # edge-disjoint path in directed G:

Vertices can have capacities.

In addition to the other constraints each vertex vhas a capacity C(v) for flow that can go through von the way from s to t. $\sum_{u \neq v} f(u \neq v) \quad \leq C(v)$

Reduce Network Flow with vertex-capacities to Network Flow (Classic):

The reduction takes $\Theta(m)$ time (in a connected graph, $m \ge n-1$) ob Running time for NFW vertex-capac is $\Theta(nm)$ (using orlin's alg.) 11.4 Tuple Selection.

- Bipartite max matching is a special case of this

- Lets start with an example:

Exam Scheduling

VIU has classes that need exams to be held in rooms and that will be over seen by proctors.

Constraints and Inputs

E[1...n] where E[i] = # of students in class i S[1..r] where S[j] = # of seats in room j A class i can have its exam in room j only if E[i] < S[j] A[1..t, 1..p] where A[k, l] = TRUE iff Kth proctor is available during Kth thre slot Furthermore, no proctor supervises >5 exams. Total size of input is N = n+r + tp Goal: Schedule classes, rooms, time slots, proctors so as to meet the constraints. (or say no such schedule is possible)

To	solve o				
S			00000	0 0 0 0 0	Æ
	Classes	rooms	time slots	protors	

To	solve o				
S	0		0	0	
	ර	Ō	0	C Q	
	0	0	0	0	
		Ð	0	0	Ð
	0	2	<u>ප</u>	Ô	
	, O	0	÷ O	0	
	0			0	
	Classes	rooms	time slot3	proctors	

Classes

rooms

time slots

proctors

0

0

Ø

0

Ô

0 · · 0

Classes

rooms

time slots

proctors

0

0

Ø

0

0

0 - · O

0

0

Ø

0

Ô

0 · · 0

Ê

Classes	rooms	time	protors
		slots	

Classes	rooms	time	protors
		slotz	

Schedule => NF

Suppose I a schedule that neets all constraints. For each (class, room, time slot, proctor) tuple, push I unit of flow through that path in the NF diagram. It will meet all the flow-capacity constraints (because we built the NF instance to reflect those constraints!) - though each class will be a flow of 1

Ø

- po total flow will be n.