Network Flow Applications 11.01 and variants (Matching)

Deft A matching in a graph is a collection of vertex-disjoint edges

\longleftarrow nod bipartite

A matching is maximal if there is no edge that can be added to the matching that is vertex disjoint with edges in the matching.

A matching is maximum if \nexists a matching with more edges
undirected
Deft A bipartite graph $G=(V, E)$ is a graph whose edge set can be partitioned into A, B
$[A \cup B=V, A \cap B=\varnothing]$ such that $E \subseteq A \times B$ ie all edges are between A and B.

Matching have applications in

- Flow networks

- Modeling bonds in Chemistry
- Caph colouring
- Stable Marriage problem
- Nemal Nets, AI
- 2D, 3D image analysis's + processing
- Document processing

We saw that the Augmenting Paths Alg can be used to Solve Max Bipartite Matching, but when we use that method on bipartite graphs with unit-weight edges, we can speed it up to $O(\sqrt{n} \mathrm{~m})$. It is called the Hopcroft-Karp-Karzanov algorithm. (1973)

Deft A vertex that is not matched in a matching is free. (unsaturated)

Deft M-alternating path in a graph G with a matching M is a path that alternates between edges $\in M$ and edges $\& M$ An M. augmenting path is an M-alternatiog path that starts and ens in free vertices
Lemma If G has a matching M and \exists an M-alternating path P that starts and ends in free vertices, then $M \oplus P$ is a matching with one more matched edge than M.
"symmetric difference" of M and P
$=M$ - edges in $\underbrace{M \cap P}+$ edges in P\M in both
$E g$:

Hopcroft Karp Karzanov Alg (Maximum Matching)
Input: bipartite graph G
Output: maximum matching $M \subseteq E$

$$
M=\phi
$$

do

$$
\begin{aligned}
P=\left\{P_{1}, P_{2}, . . P_{k}\right\} \quad \begin{array}{l}
\text { a maximal set of } \\
\text { vertex-disjoint } \\
\\
\\
M \text {-augmenting paths }
\end{array} \\
M=M \oplus\left(P_{1} \cup P_{2} \cup \ldots P_{k}\right)
\end{aligned}
$$

until $\rho=\varnothing$

How do we do this efficiently and achieve a $O(\sqrt{n} m)$ running time? (Recall Network Flow alg was

1. Find the bipartitions A and B - how fast can you do this?
2. Run a "special BFS" where the start is all free vertices in A.
"special $B F S$ " $=$ use non- M edges from A to B use M-edges from B to A.

个
\uparrow
free A
Stops at frit layer
that has free vertices

Let F be The set of free vents at level K, first level at which free vents are found.
3. Do "special DFS" from F to free A $c_{\text {alternating }}$ tracing a path back from vents in F to free A one at a time.
-The DFS should go level to level

- if it gets to free n A, remove the path from the levels so subsequent paths don + re use those verts.

Repeat from F until \nexists any F - to free A paths.

At this point, we may want to claim \exists any M-augmenting paths of length K left in G
4. Return to 2 to find a set of M-augmenting paths of length $K^{\prime}>K$. If no such level K^{\prime} exists that has free verts, halt.

This Alg is clearly "correct" (finds maximum matching) if we can show 2 things:

1. A matching $M \Longleftrightarrow \nRightarrow$ a M-augmenting path in G. is maximum
2. Claim: After Step 3 for K I vel. A M-augmenting paths of lergth K Proof: uses the bipartite nature of the graph.

If in the next iteration, you find a fie vertex in level K - AGAIN! - Then \exists at least one m-any path of length k - again!
BUT - if it was There in previous iteration, your DFS from F should have found it.

So - it wasn't there in previous it because the matching edges changed in last iteration.
BUT - that operation "flipped" The direction of the matching edges.

But... the last iteration "flipped" the colour of those edges of the previous iteration Hence, before the flip, they looked like this:
matching of previous iteration

But then the path from last iteration does not start with a free vertex $\Rightarrow \Leftarrow$.

Lemma: Hopcioft-Karp-Kazarov uses $\leq 2 \sqrt{n}$ iterations of the main loop to find a maximum matching.
Proof: After \sqrt{n} iterations, the M-augmenting paths must be of

$$
\text { length } \geqslant \sqrt{n} \text {. }
$$

How many such vertex-disboint paths (of length $\geqslant \sqrt{n}$) can exist in G?
$\leq \sqrt{n}$ because: disjoint; and

$$
\sqrt{n} \cdot \sqrt{n}=n
$$

Theorem: If M is a matching that is not maximum, then M has a m-augmenting path.

Proof: Let M^{*} be a langer matching.

1. if m^{*} has any edge e that is not incident (touching) any edges of M, then e is an M-augmenting path.
2. Otherwise iterate the following step:

Iterate: find a vertex mat is M^{*}-satimated but not M-saturated.

Grow the $M^{*}-M$ - alternating path from hat vertex until it can grow no more. If it ends in on M-unsatimated vertex - That is an M-alternating path. If not find another M^{*}-satiated, M-unsaturated vertex and continue.

The process must continue until it finds an M-alternating path, since the only way to end early is to ron out of M-unsaturated M^{*}-saturated vertices. But in Dat case, the number of M-edges $=\# M^{*}$ edges, contraclicting that M^{*} is a bigger matching.

