Given: A directed graph $G=(V, E)$ with edge capacities $C: E \rightarrow R$ and distinct source vertex (no in-edges) S and distinct sink vertex (no out-edges) t

Find: max amount of flow from s to t

Given: A directed graph $G=(V, E)$ with edge capacities $C: E \rightarrow R$ and distinct source vertex (no in-edges) S and distinct sink vertex (no out-edges) t

Find: max amount of flow from s to t

Total flow $=$ flow out from S
= flow into t
$=9$
max?

Given: A directed graph $G=(V, E)$ with edge capacities $C: E \rightarrow R$ and distinct source vertex (no in-edges) S and distinct sink vertex (no out-edges) t

Find: max amount of flow from s to t

Multi-Source / Multi sink?
Not a problem.

Deft Flow
A flow is an assignment of values $f: E \rightarrow R$ such that:

$$
\begin{aligned}
& \forall(u, v) \in E, \quad f(u, v) \leq c(u, v) \\
& \forall r \in V, v \neq s \quad v \neq t \\
& \sum_{u \in V} f(u, v)=\sum_{w \in V} f(v, w)
\end{aligned}
$$

Obey capacity Constraints

Conservation of Flow

Observe: max flow consists in maximizing

$$
\sum_{u \in V} f(s, u)
$$

(Why not maximize $\sum_{\omega \in V} f(\omega, t)$?
"Flow Augmenting Path" Alg: Ford Fulkerson
Iterative.

- Find a s-t path that has some unused capacity on all the forward edges, and positive tow on all the backwards edges
- Augment current flow with min value unused capacity (or positive flow on backwards edges) on all path edges.

