CSCI 429 Assign 2 Sol 1017

1. Binary Rep Heap, for ADT Priority Queue [.1. (4) Giver n, the shape of the Bin Rep Heap reflects the binary representation of n. in that X[i] = San array of size 2ⁱ if the in bit of n is 1 an empty array otherwise

$$\begin{array}{c} (.2. (4) - \max & time for insert: \\ If all lists are full, an insertion will cost \\ \left(\begin{matrix} logn \\ 2 \end{matrix}\right)_{i=0}^{i} \\ i=0 \end{matrix} , to mage lists of size 0, 1, 2, ..., logn. \\ ie running time in worst case is $\Theta(n) \\ \\ -\max & time for findmin is $\Theta(lgn) \\ as need \\ \\ to look at one element in each of logn lists \\ \\ to find the smallest. \\ \end{array}$$$$

Insert
$$(x)$$

- creating a new list with just x
in it costs 1 credit
the remaining credits can be
called $x_0, x_1, \dots x_{legel}$

- if A[o] is empty, A[o] will now
point to 5x's list, and no merges
need be paid for - 5x's credits
$$x_0 \cdots x_{Lignl}$$

are intact.

- As
$$\infty$$
 is marged into large lists
it will contribute its credit ∞_i
the the marge of the 2^i -sized list
 ∞ is in with another 2^i -sized list.
Since $2 \cdot 2^i$ elements contribute to the
marge, all the comparisons in this marge
are paid for.

findmin runs in Olg n) time, which is also lyn amortized time; and does not charge the data structure. Insert runs in O(ign) amortized time Consequently, interleaving these operations

2. (4) Lemma 2.3 of CLRS
rank (x) = 0 right after maps sof (x) is alled
rank (x) increases by 1 if x is made parent
of y when y has some rank as x
Nothing else charges the rank of x.
Claim: size (x)
$$\ge 2^{rank(x)}$$

Proof: By induction on V.
Basis: if r=0, then x has no children
and size (x) = 1 = 2° = 2^{rank(x)}

Now consider an x that has just achieved rank r by a Link operation, Link (xy) Then before the link, y and x both had

rank
$$r-1$$
.
Then before the Link, size $(y) \ge 2^{r-1}$ and
size $(x) \ge 2^{r-1}$.
Then after the Link, y is a child of x
and size $(x) \ge 2^{r-1} \cdot 2 = 2^r$.