Fib Heaps (cont'd)
Bounding max degree $D(n)$
$D(n)=$ max degree in the heap

$$
\gamma=\text { golden ratio }=\frac{(1+\sqrt{5})}{2}=1.61803 \ldots
$$

size $(x)=$ \# nodes in subtree rooted at x.
Lemma 19.1 Let $x \rightarrow$ degree $=k$.
Let $y_{1} \quad y_{2} \quad y_{3} \quad \cdots y_{k}$ be x 's children in order they were linked to x. Then

$$
\begin{gathered}
y_{1} \rightarrow \text { degree } \geq 0 \\
y_{2} \rightarrow \text { degree } \geqslant 0 \\
y_{3} \rightarrow \text { degree } \geqslant 1 \\
y_{4} \rightarrow \text { degree } \geqslant 2 \\
\vdots \\
y_{i} \rightarrow \text { degree } \geqslant i-2 \\
\vdots \\
y_{k} \rightarrow \text { degree } \geqslant K-2
\end{gathered}
$$

Obvious

In general, for $i>0$: When y_{i} was linked to x, x already had degree $i-1$ (or more) hence y_{i} 's degree at that tome must also have been i-1 (or more). [Consolidate only links nodes of some degree]. Since prat time, y_{i} can have lost at most one child. :o y_{i} degree $\geqslant i-2$

Fibonacci Numbers

$$
F_{k}= \begin{cases}0 & \text { if } k=0 \\ 1 & \text { if } k=1 \\ F_{k-1}+F_{k-2} & \text { if } k \geqslant 2\end{cases}
$$

Can prove by induction that:
Lemma 19.2 $\forall k \geqslant 0 \quad F_{k+2}=1+\sum_{i=0}^{k} F_{i}$

Lemma $19.3 \quad \forall k \geqslant 0 \quad F_{k+2} \geqslant \phi^{k}$

Lemma 19.4 Let x be any node in a Fib Heap
Let $K=x \rightarrow$ degree
Then $\operatorname{size}(x) \geqslant F_{k+2} \geqslant \phi^{k}$,
where $\phi=\frac{(\sqrt{5}+1)}{2}$

Proof: Let $S(k)$ denote min possible size of any node of degree K in any F ib Heap
Claim: $s(k) \geqslant F_{k+2} \quad \forall k \geqslant 2$
Proof: By Induction on K.

Basis: $S_{0}=$

$$
S_{1}=
$$

Note that $S_{0}<S_{1}<S_{2} \ldots<S_{k}$
Let z be a node that realizes the min for degree k.

$$
\begin{aligned}
& z \rightarrow \text { degree }=k \quad \text { and } \\
& \operatorname{size}(z)=s_{k}
\end{aligned}
$$

Let $y_{1} \quad y_{2} \quad y_{3} \ldots y_{k}$ be $z ' s$ children in order they were linked to z.

$$
\begin{aligned}
& \operatorname{size}(z)=S_{k} \\
& \geqslant 2+\sum_{i=2}^{k} S_{y \rightarrow \text { degree }} \\
& \geqslant 2+\sum_{i=2}^{k} S_{i-2}, \text { from Lemma 19.1 } \\
& \begin{array}{l}
\text { By Ind typ, this } \\
i s \geqslant F_{i}
\end{array} \\
& \geqslant 1+\sum_{i=0}^{K} F_{i} \\
& \begin{array}{l}
\text { took } \\
\text { from } \\
\text { here }
\end{array} \begin{array}{l}
\text { added terms } \\
\text { "Ot } \\
\text { to start of this } \\
\text { sequence }
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
=F_{k+2} & \text { by Lemma } 19.2 \\
\geqslant \phi^{k} & \text { by Lemma 19.3. B }
\end{array}
$$

Corollary 19.5. The max degree $D(n)$ of any node in an n-node Fib Heap IS

$$
O(\lg n)
$$

Proof: \forall nodes x

$$
\begin{aligned}
& n \geqslant \operatorname{size}(x) \geqslant \phi^{D(n)} \\
& \therefore D(n) \leq \log _{\phi} n \\
& \therefore D(n) \in O(\lg n)
\end{aligned}
$$

