Fib Heaps (cont'd) 10.16
Bounding max degree D(n)

$$D(n) = \max degree in The heap
 $\chi = golden ratio = (1+JE) = 1.61803...$
Size $(5x) = \pm nodes in subtree rooked at x.$
Let $y_1 \quad y_2 \quad y_3 \quad - y_k$ be x's children
in order they were linked to x. Then
 $y_1 \Rightarrow degree \equiv 0$
 $y_4 \Rightarrow degree \equiv 1$
 $y_4 \Rightarrow degree \geq 1$
 $y_4 \Rightarrow degree \geq 1$
 $y_4 \Rightarrow degree \geq 1-2$
 $y_{1k} \Rightarrow degree \geq 1-2$$$

Fibonacci Numbers $F_{k} = \begin{cases} 0 & \text{if } k=0 \\ \text{if } k=1 & \text{if } k=1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$

Can prove by induction that:
Lemma 19.2
$$\forall K \ge O \quad F = | + \sum_{i=0}^{k} F_i$$

Lemma 19.3
$$\forall K \ge 0$$
 $F_{K+2} \ge \phi^{K}$

Lemma 19.4. Let x be any node in a Fib Heap Let $K = x \Rightarrow degree$ Then size $(x) \Rightarrow F_{k+2} \Rightarrow \phi^{K}$, where $\phi = \frac{(JS+I)}{2}$

Proof: Let S(k) denote min possible size of any node of degree K in any Fib Heap Claim: $S(k) \ge F_{k+2} \quad \forall \ k \ge 2$ Proof: By Induction on K_{-} Basis: $S_0 = \sum_{\substack{S_1 = \\ S_1 = \\ }} \sum_{\substack{S_1 = \\ \\ Note that S_0 < S_1 < S_2 \dots < S_k \\ \\ Let Z be a node that realizes the min for degree k. \\ z > degree = k and \\ size(z) = S_k \\ \end{cases}$

Let yi yz yz ... yre be z's children in order they were linked to Z.

Size (z) =
$$S_{K}$$

 $\geq 2 + \sum_{i=2}^{K} S_{i+2} S_{i+2}$, from Lemma 19.1
 $B_{i+1} \sum_{i=2}^{K} S_{i-2}$, from Lemma 19.1
 $B_{i+1} \sum_{i=2}^{K} F_{i}$
 $\geq 1 + \sum_{i=0}^{K} F_{i}$
 $foot$
 fo

$$= F_{k+2} \qquad \text{by Lemma 19.2}$$

$$\geq \phi^{k} \qquad \text{by Lemma 19.3. }$$

Proof:
$$\forall$$
 nodes \propto
 $n \geq size(x) \geq \varphi^{p(n)}$
 $\therefore D(n) \leq \log_{q} n$
 $\therefore D(n) \in O(\lg n)$.