Review for Test 1.
Range Minima Queries

- Segment Trees
- subtree for first half on 1.f1, second half on Right
- recursively
- know how to construct by hard
- know what nodes you need to examine (path) by hand - Keep them minimal $O(\lg n)$ query
-Sparse Trees (" 2 "range precompute")
-know how to construct a table
- know how to do a query
- why does it take O time to query?
- How much space... if indices are $l g . n$ in size?
- Array Blocking $s=\frac{\operatorname{lgn}}{4}$

What is the Look-up Table?
How big is it?
What does a query constitute?
How did we get $O(\lg n)$, when \exists
$O\left(\frac{n}{\lg n}\right)$ entries in Look-up table?

How do we get linear space?
linear tree precompute?

- Cartesian Trees
- know how to construct one out of a given array A.
- Know how to search one for a min in a range

Lowest Common Ancestor LCA

$$
\begin{aligned}
& -R M Q \leq_{\substack{\text { in } \\
\text { Query }}} L C A \text {-show? } \\
& -L C A \leq{ }_{\theta(1)} R M Q \pm 1 \\
& \text { query }
\end{aligned}
$$

Claim: The RMQ士I on Eulevian tree depth array
is LCA of tree.
Proof: For you to do.
Given an array

- construct Cartesian Tree
- Do Euleriar tom, construct II array of node depths.
RMQ strategy involves blocks of size $\frac{\mathrm{Ign}}{2}$

Summary Array

Min Contig Sum

$$
-\left[\begin{array}{lllllllll}
0 & -1 & -2 & 2 & -5 & 4 & 11 & -6 & \cdots
\end{array}\right.
$$

Amortized Analysis
multipop stack.

- accounting method
- ϕ potentid method.

Binary Counter
Binary Representation Heap
Union Find

- what is amortized runniz the for n ops?
- might do a simplified "tower of 2 's" analysis of some DS. - know $\mathrm{ly}^{*} n$.
- know path compression, union-by-rank, a proof that union-by-rank guarantees that $\operatorname{size}(x) \geqslant 2^{\operatorname{rank}(x)}$
also \#nodes of rank r is $\leq \frac{n}{2^{r}}$

Fib heaps
know what the DS looks like
copter a series of ops from \{ Inset, Extract $\mathrm{M}_{\text {in }}$?
Ignore marks for now.

