Fibonacci Heaps cont'd 10.11.

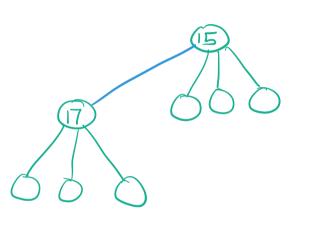
Fibonacci Heaps use "lazy" implementation of Insert, Min, and Union - if you never have an Extract Min, then its easy to just keep every node in the root list and a pointer to the Min.

However, this means that the root list is largely unstructured - there is no way to find the next Min after an Extract Min except to conduct a linear search of the root list.

General Amortization Strategy When you have to do a large amount of work (like O(r), where ris # nodes in the root list) also do O(r) amount of "clean up" ie reduce the potential for future work.

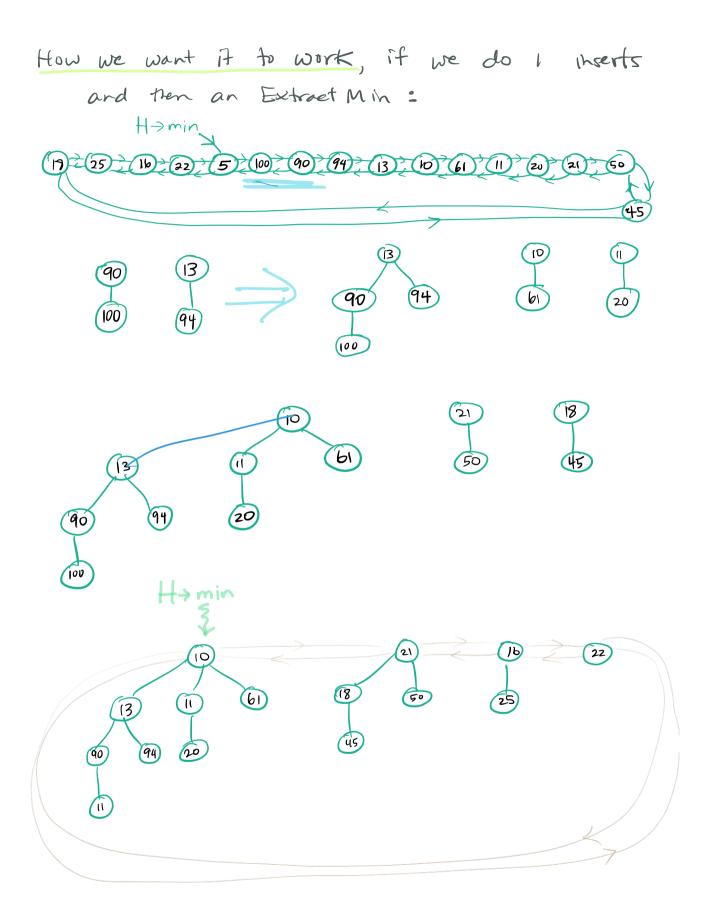
What we want CONSOLIDATE to accomplish?

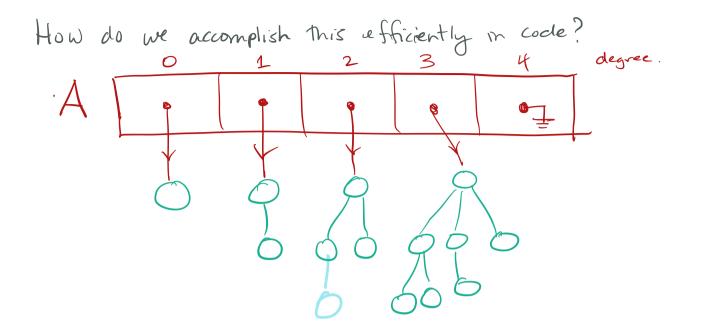
- find the min root in rootlist
- merge trees in root list so There are fewer to search in future



) Find 2 trees of same degree d Make one be child of other, creating a d+1 degree tree

At the end, we want there to be O or 1 tree of each degree





- A [O .. D(n)] is an auxiliary array that is created during the CONSOLIDATE opin
- D(n) is the maximum degree of any root in the heap of n nodes

CONSOLIDATE (H)

new
$$A \equiv 0... D(H_{1}N]$$
 of powers to trees
for $i = 0$ to $D(H_{1}N)$ $A \equiv i] = Nullfor each W in $H \Rightarrow rootlist$ $\leftarrow t(H)$
 $x = W;$ $d = x \Rightarrow degree$
while $A \equiv d \equiv x \Rightarrow degree$
while $A \equiv d \equiv x \Rightarrow degree$
while $A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d \equiv x \Rightarrow degree$
 $W = A \equiv d =$$

FibHeapLink
$$(H, y, x)$$

remove y from root list of H
make y a child of x
 $x \rightarrow degree + t$
 $y \rightarrow mark = FALSE // mark" only if node has lost
// a children since it got its current
parent$

Size of rootlist at this point is \leq t(H) -1 + D(n) new roots roots except that were extracted min children of min - The while loop is O(1) - each time it gets executed, the number of thes in root lat is diminished by 1 60 total number of executions of while loop is $\xi + U(H) - I + D(n)$ and each execution is O(1) total work done in Extract Min 13 O(D(n) + t(H))Also, $\Delta \phi = D(n)+1 + am(H) \phi$ after $\phi = D(n)+1 + am(H) = D(n)+1-t(H)$

(we scale up the units of potential to dominate the constant hidden in O(t(H)))

Claim:
$$D(n) \in O(lg n)$$

Proof: later

1

Corollary: Extract Min has amortized running time O(lyn)

$$x \rightarrow key = k$$

$$y = x \rightarrow p$$

if $y \neq NULL$ and $x \rightarrow key < y \rightarrow key$

$$CuT(H, x, y)$$

$$CASCADINGCUT(H, y)$$

if $x \rightarrow key < H \rightarrow min \rightarrow key$

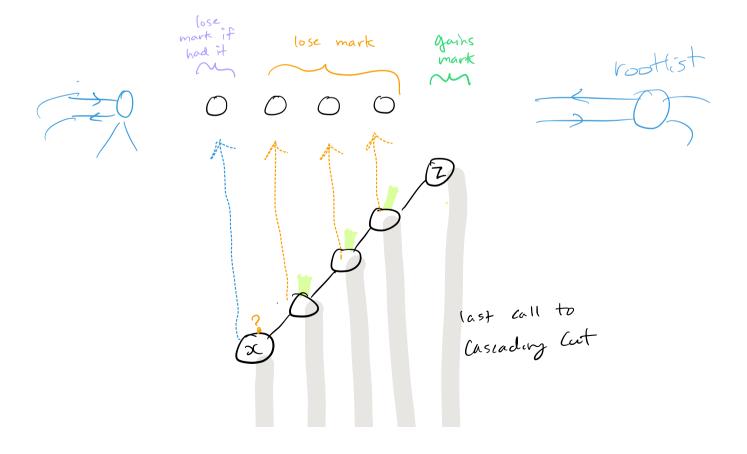
$$H \rightarrow min = x$$

How Decrease key works.
- constant amount of work,
$$\Delta \phi = 0$$
 UNLESS
it leads to Violation of Heap Order.
If $\chi \rightarrow Key < \chi \rightarrow p \rightarrow Key$ then
- "cut" χ (from $\chi \rightarrow p$) (put χ in roothist)
- if $\chi \rightarrow p$ has already had a child cut then
- "cut" $\chi \rightarrow p$ from $\chi \rightarrow p \rightarrow p$
- if $\chi \rightarrow p \rightarrow p$ has already had a child wt
- "cut" $\chi \rightarrow p \rightarrow p$ has already had a child wt
- "cut" $\chi \rightarrow p \rightarrow p$

We use "mark" to tell us whether a node has already had a child cut. - only allowed I child cut since it got its current parent Claim: Amortized cost of Decrease Key is $\Theta(1)$

Proof: Recall $\phi = t(H) + 2m$

Decrease key is $\Theta(1)$ if no cascading cuts (i.e. either no cuts or just ∞ is cut) -reduces m by 0 or 1 Suppose Decrease key promots C cascadry cuts (of $x \rightarrow p$, $x \rightarrow p \rightarrow p$, etc.) Of the C calls to cascadry cut, -the child's "mark" was true and gets set to false



$$t: ti + 1 + 1 + 1 + 0$$

$$\Delta \phi = 2 + 0 + 0 + 0 + 3$$

$$work: ti + 1 + 1 + 1 + 1$$

$$\Delta \phi = 0 (1)$$

$$t = 0 (1)$$

CLRS

Delete (H, x) Decrease Key (H, x, -00) Extract Min (H)

Decrease Key is $\Theta(1)$ amontmyed Extract Min is $\Theta(D(n))$ amortized \therefore Delete is $\Theta(D(n))$ amortized.