



































































































































Fibonacci Heaps cont'd 10.11

Fibonacci Heaps use lazy implementation of

Insert Min and union if you never

have an Extract Min then its easy to just

keep every node
in the root list and a pointer

to the Min

However this means that the root list is largely

unstructured there is no way to find the next

Min after an Extract Min except to conduct
a

linear search of the root list

General Amortization Strategy
When you have to do a large amount of work
like Ocr where r is nodes in the root list

also do O rt amount of clean up

ie reduce the potential for future work






































































































































What we want CONSOLIDATE to accomplish

find the min root in root list

merge trees in root list so there are fewer

to search in future

of same

degree d

000
gg

make one

be child of

other

creating a

dtl degree tree

At the end we want there to be 0 or 1 tree

of each degree






































































































































How we want it to work if we do l inserts
and then an Extract Min

Hominy

to

8 0 8

8.84

185
57 95 7

a






































































































































How do we accomplish this efficiently in code

ftp

sn

0

8866 8
dot

A O D n is an auxiliary array that
is created during the CONSOLIDATE op

D n is the maximum degree of any root
in the

heap of n nodes






































































































































CONSOLIDATE H

new A O D H n of pointers to trees

for 5 0 to DCH n ALI NULL

Hfor each W in H rootlist

x W d x degree

while A d NULL

Y A Cd

if so key y key
exchange x with y
1 now x should be merged tree's root

FibHeap Link H y K

A d NULL

d dtl

Ald x

H 7min Null OLDA
for 5 0 to DC n

if Ali NULL

if H 3min NULL

createroonistjustantaining
Ci

H min Ali






































































































































me

if Ali Key L H min key

His min Ali

Fib Heap Link H y x

remove y from root list of H
make y a child of x

x degree tt

Ys mark FALSE Amark only if node has lost

A 2 children since it got its aggett

Claim Amortized cost of Extract Min is OCD n

Proof
Hmm

Actual cost
to add
His min's
children to

root list is

OCD n

for each w in root list Let's count up
the work in this

r

part Aggregate
Analysts






































































































































Size of root list at this point is

I t H I D n

footstep
extracted min

Knots
that were
children of min

The while loop is OCD

each time it gets executed
the number

of trees in root list is diminished by 1

I
I l

total number of executions of white loop

is E f H I D n

and each execution is 061

total work done in Extract min is

O Den H

Also AO Din H 2m H

t H 2m H DISH TCH






































































































































work AO E O Den t t H

O D n I t H

EO Den

we scale up the units of potential to

dominate the constant hidden in O TCH

Claim D n E O Ign
Proof later

Corollary Extract Min has amortized running time

0 Ign






































































































































Decreasekey and Delete

Decreasekey H x K

if K so key error new key not less

Key K

y x p
if y Null and a key y key
CUTCH x y
CASCADING CUT H Y

if key L H min key
Htm in X

CUTCH x y

remove x from y's child list
y degree

add K to H's root list

xp Nun
a mark FALSE

CASCADING CUT H Y
2 y p
if z NULL

if ye mark
FALSE






































































































































yo mark TRUE

else
cut H y
CASCADINGCUTCH Z

How Decreasekey works
constant amount of work DO 0 UNLESS

it leads to violation of Heap order

If a key a xp key then

cut x from xp put x in rootlist

if x p has already had a child cut then

cut x p from app

if xp p has already
had a child at

cut x p pop

We use mark to tell us whether a node has

already had a child cut only allowed

1 child cut since it got its current parent










 Claim Amortized cost of Decrease key is I

Proof Recall D t H 2m

Decreasekey is I if no cascading
cats

ie either no cuts or just x is cut

reduces m by O or 1

Suppose Decrease key prompts C cascading cuts

of sap app etc

Of the C calls to cascading cut

The child's mark was true

and gets set to false

is
If

1
last call to

cascading Cut



t H I I I 0

2m our 2 2 2 2 002

Work H I I 1 I

1 2 0 0 073

two
the Decreasekey operation costs

worth 10 0 i work in Decreasekey

not in CUT
CascaDat

work in cut and
04 5 CASCADING CUT

aggregating the
recursive calls

I amortized time My

CLRS



Delete H x

Decrease Key H x x

Extract min H

Decrease key is i amortized

Extract min is 0 Den amortized

O Delete is OCD n amortized


