429 Binomial Heaps 10.4.

We are interested in Priority Queue ADT and will explore other options for their implementation.

	Binary	Fibonacci
Procedure	Heap: WC	Heap : Amortized
Make Heap	$\Theta(I)$	$\Theta(1)$
Insert	⊖(lg n)	θι)
Min	$\Theta(\iota)$	$\Theta(\mathbf{r})$
ExtractMin	$\Theta(\log n)$	$\Theta(l_{\vartheta} n)$
Union 📀	$\Theta(n)$	$\Theta(1)$
Decreasekey	⊖ (lg n)	$\Theta(1)$
Delete	$\Theta(lgn)$	$\Theta(lgn)$

For applications such as in Graph Algorithms (Single - Source Shortest Paths (Dijkstras)) we may use many Decrease Key operations - may far outnumber the Extract Min ops. Eg in Digkstra's Alg Dense graph -may have O(n) edges 20 to update (Decreose Key) 6 for each "permanont" label found.

Fibonacci Heap

- collection of rooted trees that are min-heap ordered. (key at node & keys in left- or right- subtree) - each node has - pointer to parent DC > P - pointer to child x > child. The children are in a doubly-linked circular list child AP

Circular doubly-linked child lists: can be inserted into and combined in O(1)

for Fib Heap H: $H \Rightarrow n = \# nodes in H$. E(H) = # roots in His root list m(H) = # marked nodes in HWe will use the Potentral Function method for amortized analysis $\Phi(H) = E(H) + 2m(H)$ $\Delta \Phi = net potential charges to collection of$ neaps.- a unit of potential can pay for a constantamount of work.

- Max degree in our n-node Fib Heap will be denoted D(n)
- When only the mergeable heap ops are supported, D(n) < [lgn] no Decrease Key or Delete

When Decrease Key and Delete are also used, $D(n) \in O(lgn)$ Fib Heap Ops

FibHeap.Make

$$fibHeap.Make$$

 $fibHeap.Make$
 $fibHeap.Make$

Fib Heap. Insert (x) // x > Key is already filled M x > degree = 0 x > p = x x > child = NULL A = 1if H > min == NULL = O(1)create a root list that just contains X H - min = X

FibHeap. Min
return H=>min

$$\Delta \Phi =$$

Fib Heap. Union (H_1, H_2)
 $M H_1$ and H_2 will not be usable in future
 $M H_2$ will be their union
 $H = Fib Heap. Make()$
 $H \Rightarrow min = H_1 \Rightarrow min$
Concatenate root list of H_2 with root list of $H.$
 $if (H \Rightarrow min == Null)$ or
 $(H_2 \Rightarrow min \neq Null and H_2 \Rightarrow min \land H \Rightarrow min = H_2 \Rightarrow min$
 $H \Rightarrow min = H_2 \Rightarrow min$
 $H \Rightarrow m = H_1 \Rightarrow n + H_2 \Rightarrow n$
 $A \Phi =$
return $H.$

FibHeap. Extractmin Z=H->min if Z = NULL for each child X of Z add x to H's root list X > p = NULL remove z from rootlist of H if $Z == Z \rightarrow next$ H>min = NULL else H > min = Z > next CONSOLIDATE (H) $H \rightarrow n = H \rightarrow n - l$ return 7_

