Amortized Analysis: Union -Find 0925
We saw it reported in Sedgewick 6 Wayne's slides that:

- logically treating the collection of sets as a forest
- actually representing the forest as an array (of parent pointers).
- implementing union-by-ranK and path-compression yields $\theta(\alpha(m, n))$ amortized running time! \#ops \uparrow \#elements
$\alpha(m, n)$ is "inverse Ackerman's" function which grows so slowly that if m, n are $\leq \# \underbrace{\text { atoms in universe }}$ then $\alpha(m, n) \leq 4$
I.e., amortized running time of $O(\alpha(m, n))$ is, for all practical purposes, like $\theta(1)$.
It takes a bit of work to show the $\theta(\alpha(m, n))$ bound. We will show a different but similar bound.

Deft: $\lg ^{(i)} n= \begin{cases}n & \text { if } i=0 \\ \lg \left(\lg ^{(i-1)} n\right) & i>0 \text { and } \lg ^{(i-1)} n>0 \\ \text { undefined } & i>0 \text { and } \lg ^{(i-1)} n<0\end{cases}$ or $\mathrm{Ig}^{(i-1)}$ is undesired.

Defn: $\lg ^{*} n=\min \left\{i \geqslant 0, \lg ^{(i)} n \leq 1\right\}$
$\lg ^{*} n$ is inverse of repeated exponentiation.
2^{65536} is way more than the number of atoms in the universe

$$
\begin{aligned}
& \lg 2^{65536}=65536 \\
& \lg 65536=16 \\
& \lg 16=4 \\
& \begin{array}{lll}
\lg 4 & =2 & \leftarrow \\
\lg 2 & =1
\end{array} \\
& \text {, to } \leq 1 \text { ? } \\
& \begin{array}{ll}
\lg 2 & =1 \\
\lg 1 & =0
\end{array} \\
& \therefore \lg ^{*} 2^{65536}=5
\end{aligned}
$$

Indeed, $l y^{*} n \leq 5 \forall$ integers we will usually encounter in our work, so proving that an alg runs in $\mathrm{Ig}^{*} n$ amortized time means practically it runs "like constant"

- rank of a singleton tree is 0
- rank after Union op is
- Same if one tree has smaller rank than other (smaller ranked thee becomes child)
- inc by 1 if trees have same rank.

Easy to show: Cormen, Leiserson, Revest te Stein, Algorithms
Lemma 22.3 (CLRS) \forall tree roots x,

$$
\operatorname{size}(x) \geqslant 2^{\operatorname{rank}(x)}
$$

Proof: use induction on number of Link operations, where Link is linking root of lower rank tree to x (x is parent-why?) Exercise for the student.

Lemma 22.2 (CLRS)
$\operatorname{rank}(x)$ starts at 0 , car only increase while x is a root, and does not change once
x becomes a child.
ranks only go up as you go up a tree.
Lemma 22.4 (CLRS)
\forall integer $r \geqslant 0, \exists \leq \frac{n}{2^{r}}$ nodes of rank r.
Proof: Fix r,
Suppose that, in the course of things, wherever a root X gets rank r, X paints all the nodes in its tree x-coloured
\therefore by Lemma 22.3, $\geq 2^{r}$ nodes are painted each time a root gets rank r.
Can a rode a be painted twice?
No - will never paint a node twice.

Since no node can be painted twice,
-there are $\leq h$ painted nodes,

- Each colour-class has size $\geqslant 2^{r}$
$\therefore \exists \leq \frac{n}{2^{r}}$ colour classes
$\therefore \leq \frac{n}{2^{r}}$ nodes ever get rank r.

Corollary: \forall nodes have rank $\leq\lfloor\lg n\rfloor$.

Let us consider a sequence of operations... m^{\prime} ops:
Make Set (30), Makeset (.),..Makeset (50), $\underbrace{\text { union }(30,50)}$, Find (20),-

Union with this.
\# ups in sequence
What does that do to M^{\prime}, the number of ops? no more than triples it; to become $m \leq 3 m$.
If we car show the sequence runs in $O\left(m \lg ^{*} n\right)$ time, then it runs in $O\left(m^{\prime} \lg ^{*} n\right)$ time.

So we will consider our sequence as being of operations MakeSet (-), Find (-), $\operatorname{LinK}(-,-)$

Theorem: A sequence of m Makeset, Find, Link ops paformed using path compression and union -by rank runs in worst. case $O\left(m \lg ^{*} n\right)$ time.

Proof

- We assess charges to each operation corresponding to actual cost of each operation.

MakeSet - one charge per op'h
Link - one charge per op'n.

For Find:

- note that number of charges $=$ number of parent pointers altered to point to a now parent of same for greater rank than old parent
ranks will be considered to fall into BlockS
$B_{1} \quad B_{0} \quad B_{1}$ B_{3}
$\begin{array}{ll}-1 & 0.1\end{array}$
$\begin{array}{ccccccccc} & \text { block } & -1 & 0 & 1 & 2 & 2 & & 31\end{array}$

$$
\begin{array}{ccc}
1 & 2 & 2^{2} \\
& \uparrow(1)+1 & i \\
B(j)
\end{array}
$$

- all work is charged to the "account" of work done during the course of m operations, makeset (.), Find (-), $\operatorname{link}(-,-)$ where n of the ops are makeset (-).
- a "charge" will count for any constant amount of work.
- Makeset () - one charge
- $\operatorname{LinK}(-,-)$ - one charge

Find (-)
There ane 2 kinds of changes within a
Find: Block charges and Path changes.毛

Claim: Once a node other Than a root or its child are assessed a Block charge it will never again be charged a path charge. It

Proof: If not a root or its child when it gets a block charge, then its parent has rank in a higher block, and that gap will never diminish (parent may change, but will only have same or higher rank).

Total \# of charges m all the Find Set operations: 1. For each Find, number of Block changes is

$$
\leqslant 1+\lg ^{*} n \quad-w h y ?
$$

\therefore total is $O\left(m \lg ^{*} n\right)$
2. We ask, for a given node x over all the Finds, how many times can x be changed a path charge? \oiint

- only while x 's parent is in same block
- we only need to attend to the find ops that give x a new parent, because otherwise x is a child of a root and is getting \in, not $\$$
- car only do this $B(j)-B(j-1)-1$ times
size of block contain. x 's rank.

Recall - a nodes rank is "frozen" once it becomes a child of another node, and it never gets a (path charge) when it is a root.
\therefore it is sufficient to look at every non -root node at the end of the mun and add up the sizes of the Blocks their ranks belong to.
$N(j)=$ number of nodes with ranks in Block(j)

$$
N(j) \leq \sum_{r=B(j-1)+1}^{B(j)} \frac{n}{2^{r}}=\frac{n}{2^{B(j-1)+1}}+\frac{n}{2^{B(j-1)+2}}+
$$

for $j=0, N(0)=\frac{n}{2^{\circ}}+\frac{n}{2^{\prime}}=\frac{3 n}{2}=\frac{3 n}{2 B(0)}$
for $j \geqslant 1, N(j) \leqslant \frac{n}{2^{B(j-1) / P}}, \sum_{i=0}^{\infty} \frac{1}{2^{j}}$

$$
\begin{aligned}
& \leqslant n \sum_{i=0}^{\infty} \frac{1}{2^{i} 2^{B(j-1)+1}} \\
& =\frac{n}{2^{B(j-1)+1}}+\frac{n}{2^{B(j-1)+2}}+ \\
& \leqslant \frac{n}{\left.2^{B(j}-1\right)}=\frac{n}{B(j)}=\frac{3}{2} \cdot \frac{n}{B(j)}
\end{aligned}
$$

Hence $N(j) \leq \frac{3 n}{2 B(j)}$

Let $P(n)=$ number of path changes

$$
P(n) \leq \sum_{j=0}^{l g^{k} n-1} \frac{3 n}{2 B(j)}(B(j)-B(j-1))
$$

upper bound upper bound on number
number of nodes with
rank $\in B\left(j_{j}\right)$
of ranks the nodes parent can have

- each path change comes with a new parent -rank within the block.

$$
\leqq \frac{3 n}{2} l_{y}^{*} n
$$

\therefore Total \# of path changes is $\leq \frac{3}{2} n \lg ^{*} n$
Total \& of block changes E is $\leqslant m \lg ^{*} n$
Also, $n \leq m$, so total \# charges is $O\left(m \mid g^{*} n\right)$

Corollary: A sequence of m MaKe Set (C_{-}) Union (-,-) Find () operations, n of which are MakeSet (), can be performed on the disjoint-set-forest implementation of Union -Find (using union-by-rank and path compression) in worst case $O\left(\lg ^{*} n\right)$ amortized time.

Going buck to that mysterious page...

Hence $N(j) \leq \frac{3 n}{2 B(j)}$

Let $P(n)=$ number of path changes

$$
P(n) \leq \sum_{j=0}^{\lg ^{*} n-1} \frac{3 n}{2 B(j)}(B(j)-B(j-1))
$$

\# of different upper bound
blocks number of
nodes with
$\operatorname{rank} \in B(j)$
upper bound on number of ranks the nodes parent car have - each path charge comes with a new parent-rank within the block.

$$
\leq \frac{3 n}{2} l_{y}^{*} n
$$

\therefore Total \# of path charges is $\leq \frac{3}{2} n \lg ^{*} h$
Total \# of block changes E is $\leqslant m \lg ^{*} n$
Also, $n \leq m$, so total \# charges is $O\left(m \mid g^{*} n\right)$

How many blocks can There be for n-element forest?
rank r is in block $\lg ^{*} r$, for
$r=0,1, \ldots,\lfloor\lg n\rfloor \leftarrow\lfloor\lg n\rfloor$ is maximum rank.
The highest numbered block is

$$
\lg ^{*}(\lg n)=\lg ^{*} n-1 .
$$

