
 

Amortized Analysis 09.20

Sometimes we use an algorithm and its accompanying

DS just once to solve a problem

eg find god of 1096 and 128

Often however a DS has a lifetime and

queries and modifications
are executed on the DS

Eg database

network

We have studied worst case and perhaps

average case running times of a singleapplication

of an algorithm but it makes sense sometimes to

widen our lens and look at running times over

the lifetime of the DS



Eg stack

push x

pop

Pushes ont top of stack

removes top element from
Ste

top returns value at top of stack

If we use the array implementation of the stack

the running times
are

tT

Now
sptoneedaration
multipop K

while stackempty and K O

popC

K

The running time for multipop is clearly OCK



if OE Ken where n is elements

ever pushed

But let us consider the problem thusly

given a sequence
of n push pop multpop

ops what is the worst case running time

of the sequence
The result is dividedby the number of ops

to yield
the AMORTIZED ANALYSIS

Facile analysis max pushes is n

each op is e Ocf F n elements

F n operations

running
the is 0 n

amortized analysis is 0 n per op



Aggregate Analysis

Total of pushes is E n

Total of ftp.t including the pops in

the multipops E total pushes I n

Observe work done in the n operations

is t constant amount per open

stytalamontofeffecturpsI n
I amortized running per operation

is I

AccountingMethod
Of Amortized Analysis

operation is paid for in the currency of

the analysis I time

But you can run up a deficit or a credit

like a bank



you don't have to pay for the work

exactly when it is done but payment must

reflect actual running
time work done

Eg multi pop stack

A push pay for
the push and the

eventual pop

push x pay I credit for
the

actual work of the P Great
leave one credit on

element payment in advance

m

op pay I credit
for the

actual work entering I credit
and leaving the

Code

If not empty use

credit on top of each
element

to pay for
the work of

popping
the element if
necessary



principle I credit only ever pays for a

constant amount of work

FÉ

f

pop

a

EI

Running time is lor2 credits OCD work

per operation amortized over the run

of the sequence of operations

i e n ops takes O n time

each op takes
OLD amortized time



Potential Function Method of Amortized

Running time Analysis

represents prepaid work as potential energy

or just potential that can be released

later to pay for future work

maps state of the data structure to

a real number

Each operation i does an amount of work Ci

and may also result in a change in the

state of the DS 0 di i 40


