$$
\text { CSCl } 429 R M Q \rightarrow L C A
$$

RMQ (range minimmon queries)
Given: Array $A[1 \ldots n], l, r, 1 \leq l \leq r \leq n$
Find: index $i, l \leq i \leq r$, such that $A[i]$ is min in range $A[l \ldots r]$.

LCA (Lowest Common Ancestor)
Given: Rooted tree T, nodes a, b
Find: node that is ancestor of both a and b and is lowest in tree.

Want:(1) query(n) space

Assume: Tree is static

Possible project:

- Read and teach us the dynamic version (Cole \& Hariharan, 1984) see notes on weefbywek

RMQ reduces to $L C A$

- Make the Cartesian Tree
- $a=$ node for $A[l]$
$-b=$ node for $A[r]$
- find LCA - that is the Range Minimum.
(we can do LCA on any rooted Wee, but when we do it on Cartesian thees, we get the Range minimum)

$$
\begin{aligned}
& \operatorname{RMQ}(6,8)=7 \\
& \operatorname{RMQ}(5,6)=5 \\
& \operatorname{RMQ}(1,3)=2 \\
& \operatorname{RMQ}(3,6)
\end{aligned}
$$

If we can solve $L C A$ in $O(1)$, we can solve $R M Q$ in $O(1)$.

Lowest Common Ancestor (LCA)
Want: $O(1)$
Method: Reduce to $R M Q$. (what???) a special case.
$R M Q \pm 1=$ adjacent values in array can only differ by ± 1

Reduce LCA to $R M Q \pm 1$:
Given: rooted tree T
Produce: an instance of $R M Q^{ \pm} 1$ so that $R M Q \pm 1$ queries give us the answers to our LCA queries on T.

Step 1: conduct Euler tour of T to construct list of node depths.
$\begin{array}{lllllllll}4 & 3 & 5 & 1 & 7 & 8 & 2 & 6 & 9\end{array}$
(1)

Observation: the new array is ± 1, so if we can query $R M Q \pm 1$ quickly, what will that accomplish for us?

Claim: The RMQ ± 1 on The Cartesian-depth array is the LCA of the original T.

Proof: for you to do.
[Hint: I would try structural induction]

Solve $R M Q \pm 1$ in $O(1)$ time.

Lets look at a block.

how many
can there be?

Indeed, mapping

$$
\begin{aligned}
& 0 \rightarrow-1 \\
& 1 \rightarrow+1
\end{aligned}
$$

We have simply an alphabet. charge of the set of all bitstrings of length $\frac{1}{2} \lg n$
$\Rightarrow \exists$ distinct block types
[Note: This \mathcal{T} is true only for $R M Q \pm 1$

- what is it for "geneal" RMQ?]

Boundary blocks
Have a Look-up Table for different block types.
\qquad

Size of this DS:O()

The range of whole blocks:
The Summary Array

- Build a SparseTable for the Summary Array.
- Values are not necessarily $R M Q \pm 1$-type.

$$
n / \frac{1}{2} \operatorname{lgn} \text { blocks }=2 \frac{n}{\lg n} \text { blocks }
$$

Sparse Table is $2 \frac{n}{\lg n}$ *

$$
\begin{aligned}
& \lg \left(\frac{2 n}{\lg n}\right)=\lg n+\lg 2-\lg \lg n \in \theta(\lg n) \\
& \therefore n
\end{aligned}
$$

Sparse Table

same category of
block

- will yield same query answers (interns of off sets.)
- Construct a look-up table for each
- i, j can take one of The $\frac{\lg n}{2}$ possible values
$\therefore\left(\frac{\lg ^{2} n}{4}\right)$ possible queries within a block type
$\exists \frac{2 n}{\lg n}$ blocks, but only $2^{\frac{\operatorname{lgn}}{2}}$ types of blocks.

\forall entry in the table is of size $\lg \lg n$ (why?)
\Rightarrow size of table is $\sqrt{n} \lg ^{2} n \lg \lg n$. ie is $o(n)$ bits.

