09-11 Range Minima Queries
"linearithmic" $=O(n \log n)$
Last time, our choices were:

	Preprocessing	Query	Space
no preprocess ing	$O(1)$	$O(n)$	$O(n)$
precompute everything	$O\left(n^{2}\right)$	$O(1)$	$O\left(n^{2}\right)$
segment tree	$O(n)$	$O(\log n)$	$O(n)$
Sparse Table precompute	$O(n \log n)$	$O(1)$	$O(n \log n)$
$O(n)$	$O(\log n)$	$O(n)$	

2^{j}-range precompute

$B[5,3]=m$ min in range A \square
${ }^{5}$

i.e. only precompute query solutions when range is exactly a power of 2 , starting at each i.

$$
\begin{aligned}
& B[i, 0]=i \quad \forall i \in[1 \ldots n] \\
& B[i, j]=\text { index of min in } A\left[i \ldots i+2^{j}-1\right] \\
& B[i, j]=\left\{\begin{array}{l}
B[i, j-1] \text { if } \cdot A[B[i, j-1]] A\left[B\left[i+2^{j-1}, j-1\right]\right] \\
B\left[i+2^{j-1}, j-1\right] \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

That is the pre-computing step

- takes $O(n \log n)$ time and $O(n \log n)$ space

Query

$$
R M Q_{A}(l, r)
$$

- find largest r^{\prime} such that

$$
r^{\prime} \leq r
$$

$r^{\prime}=l+2^{j^{-1}}$ for some int j

- look-up $B\left[\ell, r^{\prime}\right]$

- Compare the two, take The smallest

Linear time preprocessing $\log _{q} n$ queries Linear space

Array A is conceptually divided into blocks of size $S=\frac{\log n}{4} \Leftarrow \operatorname{low}_{\text {many? }} \frac{4 n}{\log n}$ $\frac{n}{(\log n)}$

- min for every block can be computed in time $\frac{\log n}{4} \cdot \frac{4 \cdot n}{\log n} \in O(n)$ time - precompute and store in Luok-up Table.

$$
\operatorname{RMQ}_{A}(l, r)
$$

- naively search
left boundary block $\left\{\begin{array}{l}=O(\log n)\end{array}\right.$
- naively search right boundary block

Look-up each block in between
ie naively search
the Look-up Table.

$$
\begin{aligned}
& O\left(\frac{4 n}{\log n}\right) \\
& =O\left(\frac{n}{\log n}\right)
\end{aligned}
$$

\rightarrow ie the block minima
Instead of naive search on the Lookup Table, use sparse table.

$$
\begin{aligned}
\Rightarrow \begin{array}{c}
\text { space } \\
\text { precompute }
\end{array} & O(n) \\
& \in O(n)
\end{aligned}
$$

query time $O(\log n)$.

Range Mininia Queries in Constant time and Linear Space.

- use the above-given solution but be clever about the blocks Construct a Cartesian Tree for each block (of size $s=\frac{\log n}{4}$)

The solution for the whole block is always at the root.

For partial blocks, need to be able to query a range within a block/Cartesian tree and get the answer back in constant time \ldots and need to be able to store all the trees linear $(O(n))$ space.

Lets look at the storage first.

- The cartesian trees are of size $\frac{\log n}{4}=S$
- The number of different Cartesian trees of size s is $C_{s}=s^{\text {th }}$ Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Recurrence is $C_{n}=\sum_{i=1}^{n} C_{i-1} C_{n-i}$
$\left.\begin{array}{ccccccc}1 & 1 & 2 & 5 & 14 & 42 & 132\end{array}\right]$

Point is, $\quad C_{n} \in O\left(4^{n}\right)$
So $\exists 4^{\text {s }}$ Cartesian trees of size S ie $4^{\frac{\log n}{4}}$ Cartesian trees of size S

Note: result depends only on shape of tree:

from start of block.
\therefore only need to know which of the 4^{s} trees the block-of-interest is shaped
like, Then have a Lookup table for each (ℓ, r) in that tree.
How many such pairs are There? \qquad $\left\{\begin{array}{l}\text { on } \\ \text { problem } \\ \text { set. }\end{array}\right.$ \therefore size of table is \qquad
How do you figure out what row corresponds to current block-tree?
block tree 1
block tree 2

See en.wikipedia.org/wiki/Range-minimum-query

