09-	11 Range	Minima Que	eries
"linearithmic" = $O(n \log n)$			
Last time, our choices were :			
	pre processing	Query	Space
no preprocess ing	O(1)	O(n)	O(n)
pre compute everything	$\left(n^{2} \right)$	(\mathbf{I})	$\left(\left(n^{2} \right) \right)$
segment tree	O(n)	O (logn)	O(n)
Sparse Table precompute	D(n log n)	$\mathcal{O}(1)$	O(n logn)
	O(n)	O(logn)	O(n)

- compare the two, take the smallest
Linear time preprocessing log n queries
Linear space
Array A is conceptually divided into
blocks of size
$$s = \frac{\log n}{4} \ll \frac{4n}{\log n}$$

 $\frac{n}{(\log \lambda)}$
- min for every block can be computed in

time logn. <u>4</u>.n $\in O(n)$ time 4 logn - precompute and store in Look-up Table.

RMQ A (l, r)
- naively search
left boundary block
$$O(s)$$

= $O(logn)$
- naively search
right boundary block
Look-up each block
M between
ie naively search
He Look-up Table. = $O\left(\frac{4n}{logn}\right)$
He Look-up Table. = $O\left(\frac{n}{logn}\right)$
Fie He block minima
Instead of (naive search on the
Look-up Table, use sparse tube.
 \Rightarrow space
precompute is $O(100 \text{ m})$.
E $O(100 \text{ m})$.

The solution for the whole block is always at the root.

For partial blocks, need to be able to query a range within a block/Cartesian tree and get The answer back in constant time ... and need to be able to store all the trees linear (O(n)) space. Lets look at the Storage first. - The cantesian trees are of size $\frac{\log n}{4} = S$ - The number of different Cartesian trees of Size S is $C_s = s^{th}$ Catalan number $C_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}$ Recurrence is $C_n = \sum_{i=1}^{n} C_{i-1} C_{n-i}$ 1 1 2 5 14 42 132 ... 0 1 2 3 4 5 6 ...

offset from start of block.

4s trees the block-of-interest is shaped

like, then have a Look-up table for each (R,r) in that tree. problem
{
 set . How many such pairs are There? size of table is ____

How do you figure out what row corresponds to current block - tree?

See en. wikipedia.org/wiki/Range-minimum-query