
Computer Science 260 FactSheet 2017

Big Oh Rules (Facts):

1. Transitivity of Big O: f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) ⇒ f(n) ∈ O(h(n)).

2. Strange But True Log Domination Rule: (log n)r ∈ O(ns) for all constants r and s both not equal
to 0.

3. Polynomial Rule: p(n) ∈ O(q(n)), whenever p(n) is a polynomial in n, of degree k, and q(n) is a
polynomial in n, of degree t, where k and t are constants and k ≤ t.

4. Product Rule: f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) ⇒ f1(n) · f2(n) ∈ O(g1(n) · g2(n)).

5. Removal of Constant Factors Rule: f(n) ∈ O(c · f(n)) for all constants c > 0.

6. Log Base is Irrelevant Rule: loga n ∈ O(logb n) for all constants a, b > 0 and a, b 6= 1.

7. Reciprocal Rule: f(n) ∈ O(g(n)) ⇒ 1
g(n) ∈ O(1

f(n)).

8. Sum Rule: If f1(n) ∈ O(g(n)) and f2(n) ∈ O(g(n)) then f1(n) + f2(n) ∈ O(g(n)).

9. Less-Than Rule: if f(n) ≤ g(n) for all n greater than some n0 > 0 then f(n) ∈ O(g(n)). Use this
rule only when a) the ≤ relation is obviously true, and b) no other rule can by applied

When using the Rules to prove a Big Oh statement, be sure to refer to the Rule explicitly by name,
and number the lines of your proof; and if a statement follows logically from other statements and a
rule, refer to the statements by number and the rule by name.

Definition of Big Oh: If ∃c > 0, n0 > 0 such that f(n) ≤ c ∗ g(n) ∀n ≥ n0, then f(n) ∈ O(g(n)).

Master Theorem

For a function T (n) defined on positive integers, where T (n) = aT (n
b
)+ f(n) and f(n) is a positive-

valued function, and constants a and b are such that a ≥ 1 and b > 1, then:

1. If f(n) ∈ O(nlog
b
a−ǫ) for some constant ǫ > 0, then T (n) ∈ Θ(nlog

b
a).

2. If f(n) ∈ Θ(nlog
b
a) then T (n) is Θ(nlog

b
a log n)

3. 3. If f(n) ∈ Ω(nlog
b
a+ǫ) for some constant ǫ > 0, and there exists some c, 0 < c < 1 such that

af(n
b
) < cf(n) when n is sufficiently large, then T (n) ∈ Θ(f(n)).

Log facts

1. lg n ≤ n ∀n ≥ 1, and log n ≤ n ∀n ≥ 1.

2. logda n is, by definition, (loga n)
d

3. 2lgn = n

4. loga n
b = b loga n

5. logb a = log
c
a

log
c
b

6. logb a = 1
log

a
b

7. alogb
c = clogb

a

8. logc(a ∗ b) = logc a+ logc b

9. log4 5 = 1.161

10. log5 4 = 0.861

11. log4 3 = 0.792

12. log3 4 = 1.262

