

Proof: (=>) Suppose L is decidable, and X is
a decider for L.
Then X is also a recognizer for L.
Furthermore, we can construct a recognizer
$$\overline{X}$$
 for \overline{L} as follows:
 $\overline{X} =$ "on input $\langle w \rangle$,
1. Run X on W.
-if X accepts, REJECT.
-if X rejects, ACCEPT."

X always halts, since × is a decider.
X accepts iff × rejects, ie if w∉L
i.e. when w∈L. ^oo X decides L. ^{III}

$$Z =$$
 on input $\langle w \rangle$

Note that Z will always halt, because one of Y or Y will have to halt and accept. Furthermore, we have programmed Z to accept iff WEL, reject otherwise.