CSCI 320 Practice Midterm II

NAME:Solutions

Note that we use "TM" to mean "Turing Machine". The following languages are known to be **Unde-**cidable

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}.$ $Halt_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on string } w \}.$ $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no strings} \}.$ $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}.$

1. (10 marks) Show the the following language is **undecidable**: $OneAccepts_{TM} = \{ < M_1, M_2, w > | M_1 \text{ and } M_2 \text{ are TMs exactly one of them accepts } w \}$. Do not use Rice's Theorem. For full marks, give a brief argument that shows your reduction works.

Solution

BWOC. Suppose $OneAccepts_{TM}$ is decided by a TM OA. Then the following TM A decides A_{TM} , where:

- A= On input $\langle M, w \rangle$, where M is a TM and w a string:
 - 1. Construct a TM Rej as follows: Rej= "on any input, REJECT"
 - 2. Run OA on input $\langle M, Rej, w \rangle$. if OA accepts, ACCEPT. if OA rejects, REJECT."

If M does not accept w, then OA must reject $\langle M, Rej, w \rangle$, and A returns the right anwer – it REJECTS $\langle M, w \rangle$.

If M accepts w, then OA accepts < M, Rej, w >, and A again returns the right answer – it ACCEPTS < M, w >.

Therefore A decides A_{TM} . But A_{TM} is undecidable. That's a contradiction. Hence OA does not exist, and $OneAccepts_{TM}$ is undecidable.

2. (a) (4 marks) Prove that the class of Turing-decidable languages is closed under intersection. [Hint: "Let L_1 and L_2 be two Turing-decidable languages, decided by X_1 and X_2 respectively. Then we can construct a TM X that decides the language $L_1 \cap L_2$ as follows: ..."] Solution:

Solution:

Claim: The class of Turing-decidable languages is closed under intersection. Proof: Let L_1 and L_2 be two Turing-decidable languages, decided by X_1 and X_2 respectively. Then we can construct a TM X that decides the language $L_1 \cap L_2$ as follows:

- X = "On input $\langle w \rangle$, where w a string:
 - 1. Run X_1 on $\langle w \rangle$. if X_1 rejects, REJECT. if X_1 accepts, continue.
 - 2. Run X_2 on $\langle w \rangle$. if X_2 rejects, REJECT. if X_2 accepts, ACCEPT."

- (b) (6 marks) Prove that the class of Turing-recognizable languages is closed under union. **Solution:** Proof: Let L_1 and L_2 be two Turing-recognizable languages, decided by R_1 and R_2 respectively. Then we can construct a TM R that decides the language $L_1 \cup L_2$ as follows:
 - X= "On input $\langle w \rangle$, where w a string:
 - 1. Run X_1 on $\langle w \rangle$, and in parallel run R_2 on $\langle w \rangle$. if either accepts, ACCEPT. if either rejects, continue with the other one. if both reject, REJECT."

Since any string in the union will be accepted eventually by either R_1 or R_2 , it will give the correct answer if the answer is ACCEPT.

If w is not in the language, X will either REJECT or loop forever.

- 3. Are the following languages recognizable? Prove your answer.
 - (a) (10 marks) Reject_{any} = { $\langle M \rangle | M$ is a TM, and there is a string w that M rejects }. Solution

 $\operatorname{Reject}_{TM}$ is recognized by a TM R, where:

- $R = On input \langle M \rangle$, where M is a TM:
 - 1. Let S_i be the list of strings of length $\leq i$ over the alphabet, in shortlex order.
 - 2. For i = 1, 2, 3, ..., run M on each string of S_i for i steps if R rejects any string, ACCEPT.

Otherwise, i = i + 1 and go to 2."

If M does rejects some string w of rank i and the computation to reject takes j steps, then R will accept < M > at or before the iteration $\max(i, j)$. If M does not reject any string, then R will never accept or reject, but then < M > is not in the language, and a recognizer is allowed to loop forever on strings not in the language.

(b) (10 marks) OneAccepts= {< $M_1, M_2, w > |M_1|$ and M_2 are TMs, and exactly one of M_1 and M_2 accepts w.}

Solution

BWOC. Suppose $OneAccepts_{TM}$ is recognized by a TM OA_R . Then the following TM A decides A_{TM} , where:

A= On input $\langle M, w \rangle$, where M is a TM and w a string:

- 1. Construct a TM Acc as follows: Acc = "on any input, ACCEPT"
- Run OA on input < M, Acc, w >, and in parallel run M on < w >. if OA accepts, REJECT. if M accepts, ACCEPT."

If M does not accept w, then OA must accept < M, Acc, w >, and A returns the right anwer – it REJECTS < M, w >.

If M accepts w, then A again returns the right answer – it ACCEPTS $\langle M, w \rangle$.