Note that we use "TM" to mean "Turing Machine". The following languages are known to be **Unde-**cidable

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}.$ $Halt_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on string } w \}.$ $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts no strings} \}.$ $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}.$

- 1. (10 marks) Show the following language is **undecidable**: $OneAccepts_{TM} = \{ < M_1, M_2, w > | M_1 \text{ and } M_2 \text{ are TMs exactly one of them accepts } w \}$. Do not use Rice's Theorem. For full marks, give a brief argument that shows your reduction works.
- 2. (a) (4 marks) Prove that the class of Turing-decidable languages is closed under intersection. [Hint: "Let L_1 and L_2 be two Turing-decidable languages, decided by X_1 and X_2 respectively. Then we can construct a TM X that decides the language $L_1 \cap L_2$ as follows: ..."]
 - (b) (6 marks) Prove that the class of Turing-recognizable languages is closed under union.
- 3. Are the following languages recognizable? Prove your answer.
 - (a) (10 marks) Reject_{any} = {< M > | M is a TM, and there is a string w that M rejects }.
 - (b) (10 marks) OneAccepts= {< $M_1, M_2, w > | M_1 \text{ and } M_2 \text{ are TMs}$, and exactly one of M_1 and M_2 accepts w.}