
 

Some techniques for

Undecidability Recognizability

The general technique for showing a problem

is easy decidable recognizable and later

poly time decidable is to come up with an algorithm

Tm that solves it decides recognizes or poly time

decides it

The general technique for showing
a problem is

hard is to show that

if I a blackboxL solver for the

problem in question

then I a solver of the unsolvable

leg a decider for the undecidable

Solver of the unsolvable on input 2

all the

pink ACCEPT



code else
my ybe
computable

so that

if black box works the code undeniably
solves the unsolvable

When we show that if we have a solver for X

then we can construct a solver for Y

that is referred to as

Reducing Y
to X

Y solver

fawn

all this other stuff
can is doable

Turing reduces
to

Eg Atm reduces to Halt

Atm Fem Halt



Techniques for reducing one language to another

1 Run machines in parallel to avoid waiting for a

looping machine

U M Ma W I Mi Ma are TMS and W

is accepted by M or Me
or both

Claim U is recognizable

Proof Here is an algorithm that recognizes U

U recognizer on input M Ma W

1 In parallel run M on w and

run Mz ion w

If either one accepts ACCEPT

If both reject REJECT

Running in parallel means 8

take a step of M s computation on W

take a step of Ma's computation on W

and repeat until one halts If it



accepts halt and ACCEPT

if it rejects continue running the otherTM

if it accepts ACCEPT

if it rejects REJECT

This way you do not have to wait for a looping

machine if the other one halts

Another technique Rewiring
a TM

Rej LM W M is atm that rejects w

Claim Raj is undecidable

Proof We reduce Atm to Rej

Assume F a Rej decider X

We construct a Arm decider A as follows

A on input 2m w where M is aTM sting

1 in M make each transition hr go instead
to ha
and make each transition to ha go instead

to hr call the resulting TM Mre



2 Run X on Mrej W

if X accepts ACCEPT

if X rejects REJECT

Since X is a deader for Rej X will

accept Maj W iff M on input w

goes to ha and in that case A accepts Mw

If M loops or rejects W X will

reject Mrej W and A rejects

M W ie A decides Atm

I a decider for Reg Mk

And don't forget our other technique

Enumerable parallelism

NotEmpty m
m I m is a Tm that accepts

some string



Claim NotEmpty is recognizable

Proof NE is a TM that recognizes NotEmptyem

where

NE on input m where M is a TM

I Let 5 1

1 I Let S the first i strings of It in
shortlex order

1 1 I Run M on each string in Si
for i steps each

If M ever accepts ACCEPT

otherwise I it go
to 1 1

Argue here that NE recognizes NotEmptyem



Another technique

Tms constructing special purpose
Tms which they

can feed as input to other
Tms

LoopsOnOne M Ma W exactly one of M

and Mz loops on w

Claim LoopsOnOne is undecidable

Proof We reduce Atm to LoopsOnOne

Suppose I a TM 200 That decides loopsonOne

Then we can construct a TM A that

decides ATM as follows

A on input M W where M is a TM and

T w a string

I Construct a TM Looper that loops on all

inputs
2 Run 200 on 2M Looper W

if Loo rejects R EJECT



else run M on W

if M accepts KEPT

else if M rejects EJECT

Argue here why
A decides Aton

Note added after class

NotEtm m I m accepts at least one string

Claim NotErm is not decidable

Proof We reduce Aim to NotErm F a TM N

that decides NotErm Then we can construct a

TM A that decides A em as follows

A on input M W where Misa Tm w a string

1 Construct a TM Mw that does the following

Mw I Ignore the input
2 Run M on w

If M accepts ACCEPT

If M rejects REJECT



2 Run N on Mw

if N accepts ACCEPT

if N rejects REJECT

We argue that A decides Atm

The language L Mw is either Et if M accepts

W or L Ma 0 if M does not accept w

Hence

M does not LCM 0 N rejects A REJECTS

accept W Mw Mew

M accepts w LlMw 0
N accepts
Mo

A ACCEPTS

Mw

A decides Atm
Atm is undead able

80 N does not exist and NotErm is undecidable.DK


