Some techniques for Undecidability / Recognizability.

The general technique for showing a problem is easy (decidable, recognizable and, later, poly-time decidable) is to come up with an algorithm (TM) that solves it (decides, recognizes, or poly-time decides it). The general technique for showing a problem is "hard" is to show that, if I a black box solver for the problem in question then 3 a "solver of the unsolvable" (eg. a decider for the undecidable). Solver of the unsolvable ="on input <...>...

Call black box ACCEPT.

all the

pink

Code
In ust
be
computable

$$REJECT.$$
 "
REJECT."
REJECT."
So that,
if black box works, the code undemtably
"solves the unsolveble."
When we show that, if we have a solver for X
then we can construct a solver for Y
that is referred to as
"Reducing Y to X"
Y solver = "
 $call X-solver"$
is doable.
Eq. A m "reduces to" Halt "Turng-veduces to"
A Tm \leq_{TM} Halt

Techniques for reducing one language to another.
I. Run machines in parallel to avoid waiting for a
looping machine.

$$U = \{ \langle M_1, M_2, w \rangle \mid M_1, M_2 \text{ are TMs, and } w$$

is accepted by M_1 or M_2
or both $\overline{3}$

Another technique: Rewiring a IM.
Rej = { < M, w}) M is a Th that rejects w}
Claim: Rej is undecidable.
Proof: We reduce Atm to Rej.
Assume I a Rej-decider X
We construct a Arm-decider A as follows:

$$A = "$$
 on input < M, w > where M is a TM, wa
I. in M, make each transition to he go instead
to ha
and make each transition to ha go instead
to ha.
and make each transition to ha go instead
to ha.

Since X is a decider for Rej, X will accept $\langle M_{rej}, w \rangle$ iff M, on neut w, goes to ha; and in that case, A accepts $\langle M_{rw} \rangle$ If M loops or rejects w, X will reject $\langle M_{rej}, w \rangle$, and A rejects $\langle M, w \rangle$... ie A decides A_{TM} $\Rightarrow \in$ \therefore A a decider for Rej. MA

And don't forget our other technique, Enumerable parallelism:

Argue here That NE recognizes Not Emply TM.

Note added after class:

NotETM = { < M>) M accepts at least one string }

Claim: NotErm is not decidable. Proof: We reduce Arm to NotErm. & J a TM N that decides NotErm. Then we can construct a TM A that decides Arm as follows:

A = "on input < M, w>, where M is a TM w a string: 1. Construct a TM Mw that roes the following: $M_w = "I. Ignore the input.$ 2. Run M on w. If M accepts, ACCEPT. If M rejects, RESECT."

We argue that A decides
$$A_{TM}$$
?
The language $L(M_{\omega})$ is either Ξ^* (if M accepts
 ω) or $L(M_{\omega}) = \emptyset$ (if M does not accept ω).
Hence

$$M \text{ accepts } \omega \Longrightarrow L(M_{\omega}) \neq \phi \Longrightarrow \overset{N \text{ accepts }}{\langle M_{\omega} \rangle} \xrightarrow{A \text{ accepts }} \langle M_{\omega} \rangle$$

$$\sim^{\circ}$$
 A decides A_{TM} .
 $\Rightarrow \notin A_{TM}$ is undecidable.
 \sim° N does not exist, and Not E_{TM} is undecidable.