Chapter 7.4 NP- completeness.

As discussed last class, I two categories of complexity that capture most of the problems we are interested in finding algorithms for:

P = languages ve can decide in poly-time

- NP = languages we can decide in non-det poly time i.e. we could verify membership IF given an appropriate certificate, in det poly-time
- Eg. HamPath ENP because I a certificate (the hamilton path) that we can check in poly time to verify the graph has a hamilton path.
- Eq. CLIQUE ENP because "a clique of size K" is a certificate - can check in poly-time that the vertices in the proposed clique are indeed all adjacent to one another.
- Eq. Not Ham Path = $\xi \langle G, s, t \rangle | \not\exists$ ham path from $s + 6 \beta$ Is this language $\in NP$? $\not\notin NP$

NP

Most computer scientists believe $P \neq NP$, but so far we have not been able to prove that there are some problems are (exponentially) hard to <u>solve</u> but (polynomially) easy to check. (verify) (confirm that the proof is valid.) However.... We have a system for identifying a certain relationship among languages ENP...

Here
$$Here Here Here Ham Path decider, HC \leq_{p} HP
HC = on mput (4)
HP((4), s, t)
HC = on input (4), where decider HP.
Then we can construct a poly time Ham Cycle decider HC
as follows:
HC = on input (4), where G is a graph:
I. V edge (u, v) $\in V(G)$,
if HP((4), u, v)) = accept, ACCEPT.
2. If no such edge led to acceptance, REJECT."
The above reduction from Ham(yele to HamPath
is poly-time...
ie if HP is poly-time, so is HC If HC is not EP, Wither is HP.
Analyze the work done in HC:
 $(E(G)) \leq n^{2}$
 \therefore HC constists of $\leq n^{2}$ calls to HP.
 $:$ if HP is poly-nomial, so is HC. MA
We write HC \leq_{p} HP to block box" subratine
"reduces in poly-time to"$$

Yes, in that case ... and in fact DNF formulae can be checked for satisfiability in linear time. Boolean Formulas M CNF (Conjunctive Normal Form) $(x \vee \overline{y} \vee w) \wedge (\overline{x} \vee y \vee \overline{w} \vee z) \wedge (x \vee y)$ Is it satisfiable? $x = T \quad y = T \quad w = T, \quad z = T.$ How about $(\overline{z} \vee \overline{y} \vee \overline{w}) \wedge (\overline{z} \vee \overline{y} \vee \overline{w}) \wedge (\overline{z} \vee \overline{y} \vee \overline{w})$

$$(x \vee y \vee \omega) \wedge (\overline{x} \vee \overline{y} \vee \overline{\omega}) \wedge (x \vee y \vee \omega) \wedge (x \vee y \vee \omega) \wedge (x \vee y \vee \omega)$$

 $\wedge (\overline{x} \vee \overline{y} \vee \overline{\omega})$

Big Theorem [Cook; Levin] ∀ X ⊆ P, X ≤, SAT

Define We call a language ZNP-complete (NP-c) if $\forall X \in P, X \leq_P Z$. Eg SAT

Theorem: SAT
$$\leq_{p}$$
 3SAT
Known
NP-c SAT \leq_{p} 3SAT
candidate
for
NP-c NP-c A poly-time 3SAT
decider, S3, we can construct
a poly-time SAT decider S
S="on input $\langle \Phi \rangle$, a Bookan form
in CNF.
1. construct an instructe Φ' of
3SAT, according to an alg.
2. Run S3 on Φ'
-if S3 accepts, ACCEPT
if S3 reject, REJECT."
Alg: 1. $(x, V x_2) \Rightarrow (x_1 V x_2 V x_2)$
2. $(x_1 V x_2 V A) \land (\overline{A} V x_3 V X_4) \in \Phi'$
 $\Rightarrow (x_1 V x_2 V A) \land (\overline{A} V x_3 V X_4) \in \Phi'$
 $\Rightarrow (x_1 V x_2 V A) \land (\overline{A} V x_3 V X_4) \in \Phi'$
 $\Rightarrow (x_1 V x_2 V A) \land (\overline{A} V x_3 V X_4) \in \Phi'$
 $\Rightarrow (x_1 V x_2 V A) \land (\overline{A} V x_3 V X_4) \in \Phi'$
 $\Rightarrow (x_1 V x_2 V A) \land (\overline{A} V x_3 V X_4) \in \Phi'$
 $\Rightarrow (x_1 V x_2 V A) \land (\overline{A} V x_3 V X_4) \in \Phi'$

Theorem: 3SAT
$$\leq_p CLIQUE$$
.
Proof: (Sketch - for a particular example)
 $\varphi = (x \vee x \vee y) \land (\overline{x} \vee \overline{y} \vee \overline{y}) \land (\overline{x} \vee y \vee y)$
 $\zeta_1 \qquad \zeta_2 \qquad \zeta_3 = \zeta_k \qquad \Im SK$
 $Y = T$
 $X = F$
 $\overline{X} = F$
 $\overline{X$

We also need:
We can construct the graph (the input for the CLIQUE-decider)
in poly-time from
$$\phi$$
.
 $f: \phi \rightarrow (G, K)$ where f is poly-time
computable.

- To show it is NP-c, we reduce a hard problem to ours.

_

Claim:
$$\exists$$
 Ham(ycle in $\Leftrightarrow \exists$ an s-t HamPath in G.
G+(x,s) + (t,x)

Proof: ... prove this, and then the reduction is complete.

$$Indep Set = \frac{2}{6} \langle G, K \rangle | G \text{ is a graph} \\ and G has K vertices That are all \\ non-adjacent to one another? \\ Indep Set \in NP? \\ Indep Set \in NP-c? \\ \langle G, K, V_1, V_2, V_3, .., V_K \rangle \end{cases}$$

 $\overline{G} = \begin{cases} -some \ Vertex \ Set \\ -(i,j) \in E(G) \ iff \ (i,j) \notin E(\overline{G}) \end{cases}$

Clique
$$\leq_p$$
 Indep Set
X = . "Given $\langle G, K \rangle$,
- construct G
- run Indep Set ($\langle G, K \rangle$)
- if accepts, Accept
if rejects, REJECT. "

X decides Clique in Polytime.

 $\phi = (x_{1} \vee \overline{x}_{2} \vee x_{3} \vee \overline{x}_{4} \vee x_{5}) \wedge (x_{1})$ $\oint' = (x_1 \vee \overline{x_2} \vee A) \land (\overline{A} \vee x_3 \vee B) \land (\overline{B} \vee x_4 \vee x_5)$ $\land (x_{1} \land x_{1} \land x_{2})$