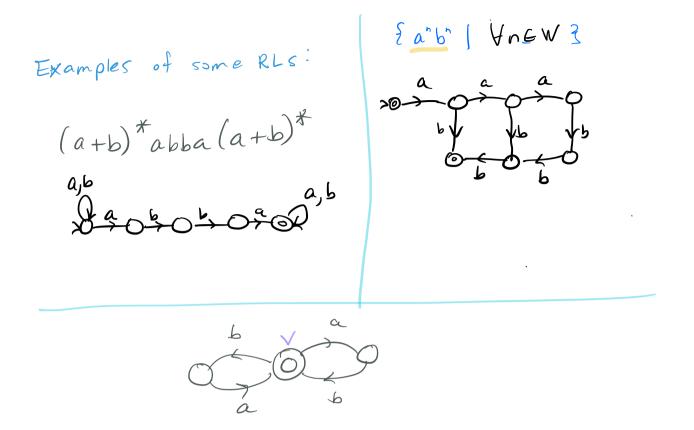
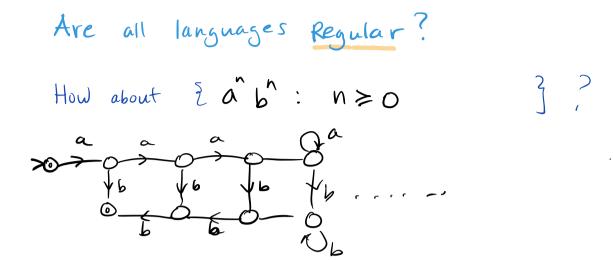


We will do more examples of using these constructions in tutorial.



$\left\{\omega\in\left\{a,b\right\}^{*}\right\}$ $\#_{a}(\omega) = \#_{b}(\omega) \leq 2$



.

.

Intuition: If the number of states is finite, the string will have to "reuse" states it has already visited.... > >>> But That means, in effect, that all ways of getting to go are "equivalent", w.r.t. L. 1.4 Non-regular Languages

Pumping Lemma:

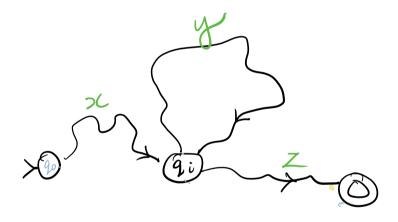
$$\forall L \in RL \exists pos int p such that$$

 $\forall W \in L \quad where \quad [w] \geqslant p$
 $\exists strings x, y, z \quad where$
 $W = xyz \quad and$
 $I. \forall i \ge 0 \quad xy^{i}z \in L$
 $a. \quad |y| \ge 0$
 $3. \quad |xy| \le p.$

Proof idea: w = xy'z = aabbabcc $xy^2z = aacc$ $xy^2z = aabbabbabcc$ $xy^2z = aabbabbabcc$

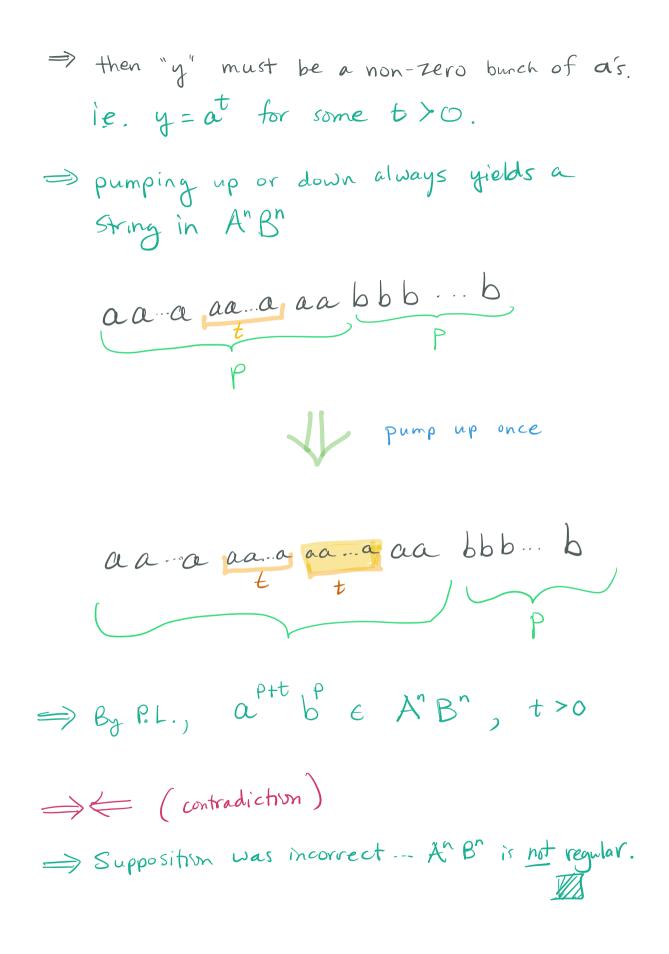
Proof of Pumping Lemma:
Let
$$W = \int_{1}^{1} \int_{2}^{2} \int_{3}^{2} \int_{1}^{2} \int_$$

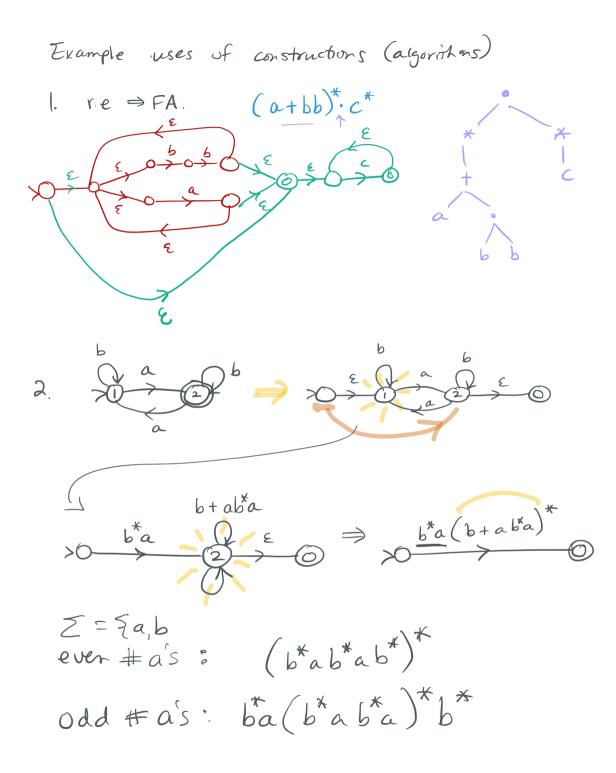
y is a substring of w ie w = xyz for some x, yz, strings What would M do (acceptor reject) on input w = xyz Accept. xyyz Accept xyyz Accept xz Accept. xz Accept.



That is, for a given reg. Lang L, There is a size limit (p) such that all strings WEL with length at least P have a non-empty substring y that appears entirely within

the first P symbols of
$$W$$
 such that
y can be replaced with \mathcal{E} , \mathcal{YY} , \mathcal{YYY} , \mathcal{YY} ,
and the resulting string is also in L.
How does that help us?
 $A^{n}B^{n} = \mathcal{E}a^{n}b^{n}|n \ge 0$?
Theorem: $A^{n}B^{n}$ is not regular.
 $A^{n}B^{n} = \mathcal{E}a^{n}b^{n}|n \ge 0$?
 $\mathcal{Y}^{i} = \mathcal{Y} \cdot \mathcal{Y} \cdot \mathcal{Y}^{i}$
 $\mathcal{Y}^{i} = \mathcal{Y} \cdot \mathcal{Y}^{i} \cdot \mathcal{Y}^{i}$
 $\mathcal{Y}^{i} = \mathcal{Y} \cdot \mathcal{Y}^{i} \cdot \mathcal{Y}^{i}$
 $\mathcal{Y}^{i} = \mathcal{Y} \cdot \mathcal{Y}^{i}$
 $\mathcal{Y}^{i} = \mathcal{Y}^{i}$





A" B" is not regular.
Proof: BWOC.
$$\Rightarrow$$
 A" B" is negular
and has pumping constant p.
det $w = a^{\lceil p_{2} \rceil} b^{\lceil p_{2} \rceil}$
Ther $\exists z_{1}q_{1}z_{1}, w = x \cdot y \cdot z_{1}$ and
1. $x \cdot y \cdot z \in L \forall i \ge 0$.
2. $|xq| \le p$
3. $|y| \ge 0$., by P.L.
Then one of these cases applies (and each
one leads to a contradiction):
i) $y = a^{2}$, $t \ge 0$ \Rightarrow did this case
ii) $y = a^{2}b^{2}$, $t \ge 0$ \Rightarrow did this case
ii) $y = a^{2}b^{2}$, $t \ge 0$, $s \ge 0$.
 $\therefore by P.L., xy^{2}z \in A^{2}B^{2}$.
 $ie aa ...a a^{2}b^{3}a^{2}b^{5}...bb}$
 $\Rightarrow \in (a^{2}s) a flex b^{2}, k = not possible m A^{2}B^{2})$
ii) $y = b^{2}$, $s \ge 0$:
 $\therefore by PL, xz \in A^{n}B^{n}$

