Jan Equivalence of r.e. and FA. p.66

Theorem: A language is regular iff
$$\exists a r.e.$$
 that
describes it.
Proof: ($\Leftarrow iere \Rightarrow NFA$)
1. σ , $\sigma \in \mathbb{Z}$
2. \mathcal{E}
3. ϕ
4. ($R_1 + R_2$)

5.
$$(R_1 \cdot R_2)$$

 $6. (R^{*})$

The resulting FA clearly accepts the language described by the r.e. \$

I. (⇒ : FA→r.e.) Construction Goal: given a FA M, construct a r.e. R such that L(M) = L(R). To do this, we invent something we will call a "generalized FA", where the transitions are labelled with r.e.'s.

We step-by-step RIP some state and replace the affected paths with new r.e.'s.

FA-to-RE: Given a FA M

- 1. Ensure start state has no "in" edges. - add a new state if necessary ... while ensuring the gen-FA accepts the same language
- 2. Ensure 3 a single accept state w/ no "out"
- 3. While = > 2 states:

RIP a state that is neither start nor accept. ensure the new yen FA accepts the same language

 $a(a+bb^*)^* \rightarrow 0 \in$ if we have transition, from start start to the final state, we are done.

r.e. is:

.

.

.

What is the closure of 26,83under <u>subtract</u> 26, 8, 0, 2, -2, ...