Bunnyttop Complexity

You have shown that the Bunnyttop problem is $\in NP$. Now you want to know: Is it $\in P$ or is it $\in NP \cdot C$? You consider the reductions below. For each reduction, say what its implications would be... TRUE, FALSE, P=NP, $P\neq NP$, Bunnyttop $\in P$, Bunnyttop $\in NP \cdot C$, etc.

Reductions can involve HAm Cycle = $\{\langle G \rangle \mid G \rangle$ has a homilton cycle $\}$ connected = $\{\langle G \rangle \mid G \rangle$ is a connected graph]CLIQUE = $\{\langle G \rangle \mid G \rangle$ has a K-clique]. SAT = $\{\langle \Phi \rangle \mid \Phi \rangle$ is a bodean formula in CNF that has a set of integers, one of Which is $\leq K_{3}^{2}$

CLIQUE Sp SAT

SAT Sp CLIQUE

- Bunnytlop \leq_{p} SAT Bunnytlop \leq_{p} Connected Connected \leq_{p} Min Min \leq_{p} Bunnytlop SAT \leq_{p} Min
- CLIQUE < BunnyHop