1. [8 marks]

DiffOn String = { \langle M_1, M_2, w \rangle | M_1 and M_2 are TMs, and exactly one of M_1, M_2 accepts w.]

Is DiffOn String decidable? Prove your answer.

2, [8 marks] ALL_TM = { < M > M is a TM that accepts all strings }

Is ALL in decidable? Prove your answer

Hint: Have a look at the reduction we did for ETM (empty).

If you are still confused about how we construct M_{ω} , see the new notes "Making M_{ω} "

3. WriteSymb = $\{ \langle M, \omega, \sigma \rangle | M \text{ is a TM} \}$ which, on input $\langle \omega \rangle$, at some point writes the symbol σ on the tape $\{ \}$

[4 marks] a) Is Write Symb recognizable? Prove your answer [8 marks] b) Is Write Symb decidable? Prove your answer.

Hint (b) Recall we get to "rewire" M, including adding a new tape symbol, say Y, that does not otherwise appear in M. Also we can rewire M so that certain transitions, say all transitions to a particular state, write Y on the tape.

- 4. Both Accept Some String = $\frac{2}{M_1M_2}$ | M, and M₂ are TMs, and $\frac{1}{2}$ a string w that both M, and M₂ accept $\frac{3}{2}$
 - a) [8 marks] Show that Both Accept Some String is recognizable.
 - b) [8 marks] Show that Both Accept Some String is not decidable.
 - C) [2 marks] Use a theorem from class to show that Intersection is not recognizable:

 Intersection = { \(M_1, M_2 \) | \$\frac{1}{2}\$ a string that both M, and M2 accept }