Thm 4.11 Atm is undecidable.

Proof was done in third,
$$V$$

We reduced Solf-Area to Arm, is trying to
prove is hard.
How is hard.
Arm decider
Arm decider
Arm decider
Arm decider
Arm decider
Arm decider
How as a subroutine
decider as a subroutine
 $E_{TM} = S \langle M \rangle | M$ is a TM that accepts no strings S .
Theorem: Em is undecidable.
Proof: We reduce Arm to Etm.
I.e. we assume (BNOC) that Erm is decided by a TM,
Call it X Generator.
Multi construct a rew TM, Mw, that works as follows:
Mw 2. Run M on The Net type ontert, w.

What does
$$M_{\omega}$$
 do on all inputs if M accepts ω ?
- M_{ω} accepts all inputs hence $L(M_{\omega})$ is
not empty and χ rejects. (+ vice versa).
 $\delta_{\omega} \chi$ is a decide for A_{Tm} . $\Rightarrow \xi$.
 $\delta_{\omega} \chi$ is undecidable. M_{ω} " $(\omega = 10)$,
 M_{ω} " $(\omega = 10)$,
 M_{ω} " $(\omega = 10)$,
 M_{ω} " $(\omega = 10)$,
return ($\chi \times \chi$); return square (10);

$$EQ_{TM} = \{ \langle M, M_2 \rangle \mid M, M_2 \text{ are } TM_5, L(M,) = L(M_2) \}$$

$$T =$$
 on input $\langle M \rangle$, where M is a TM:
1. Construct
2.
3.

Since W is a decider for EQTM, then clearly T
- always halts
- accepts
$$\langle M \rangle$$
 iff M is equivalent to Mø ie $L(M) = \emptyset$.

$$^{\circ}_{\circ}$$
 T decides ETM
 $\Rightarrow \Leftarrow$
 $^{\circ}_{\circ}$ W cannot exist, and EQ TM is undecidable.

Let NotA_{TM} =
$$\{\langle M, w \rangle \mid M \text{ is a TM that does}$$

not accept w $\{\langle M, w \rangle \rangle$

Theorem 4.23 NotATM is not recognizable Proof: BWOC. Suppose NotATM is recognized by Some TM Ā.