Pumping Lemma Practice
Prove the following languages are not regular
by applying the pumping lemma. (And magbe closure
theorems, if that makes it easier.)
1. Bal, =
$$\Sigma w \in \Sigma(,)S^* | w$$
 is a balanced string
of pavens?
2. $\Sigma w w | w \in \Sigma a, b3^* ?$
3. $\Sigma (ab)^n (ba)^n | n \ge 0?$
4. $\Sigma w \in \Sigma a, b3^* |$ either w contains "aa"
or $w = (ab)^n (ba)^n ?$
5. $\Sigma a^{3n} b^{2n} | n \ge 1?$ use closure.
6. $\Sigma w \in \Sigma a, b3^* |$ no suffix of w has
more b's than a's ?

And some simpler ones to warm up... 7. $\{\alpha^{n} b^{2n} \mid n \ge 4 \}$ 7. $\{\omega \in \{\alpha, b\}^{*} \mid \omega = \omega^{k} \}$ 9. $\{\omega \in \{0, 1\}^{*} \mid \#_{0}(\omega) = \#_{1}(\omega) \}$

Theorem (Pumping Lemma)

$$\forall$$
 Regular L, \exists p ≥ 0 such that
 $\forall \omega \in L$, $|\omega| \geq p$, $\exists x, y, z$ where
 $i) xy^{i}z \in L \forall i \geq 0$
 $z) \omega = xyz$
 $\exists) |xy| \leq p$
 $4) |y| \geq 0$

Claim: Bal is not regular.
$$= ((((...())))...)$$

Proof: \Rightarrow Bal is Regular. $= ((((...())))...)$
Proof: \Rightarrow Bal is Regular, and has
Pumping constant $p. = 10$
Consider the string $(P)^{P}$ (call it w)
Then by P.L. $W = xyZ$, $|xy| \le p$ so
 $y = (t; and [y] > 0$ so $t > 0$.
Then $xy^{2}Z \in L$ is $(P^{-t})^{P} \in L$.
 $\Rightarrow \notin$
 $p = (t; and [y] > 0$ so $t > 0$.

() ()

$$L_{3} = \left\{ (ab)^{n} (ba)^{n} \right| \quad n \ge 0 \right\}.$$

$$ab ab ab babbababa
Claim: L_{7} is not regular.
Proof: $\begin{array}{c} L_{3} \text{ is negular, and has} \\ pumping constant p. ababinab baba in baba
Consider the string $(ab)^{p} (ba)^{p} = \bigcup$.
Then $W = 2yz$ where $|zy| \le p$, $|y| > 0$.
So:
Case 1. $y \stackrel{a}{=} b(ab)^{r}$ or $(ab)^{r}a$
then y does not have $\#_{a}(y) = \#_{b}(y)$
So $\#_{a}(zz) \neq \#_{b}(zz)$
but $zz \in L$ (by pumpy down)
 $\implies (all strings in L have $\#_{a}=\#_{b}$$$$$

Case 2:
$$y = (ab)^r$$

Then pumping down once yields
 $(ab)^{p-r} (ba)^p$, which does not
have bb in middle since $r \neq 0$.
 $\Rightarrow \notin (all strings in L have
bb in The middle.)$

•

Claim:
$$\frac{1}{2} \sqrt{2} \quad w \in \sqrt{2}0, 13^{+} \mid \#_{0}(w) = \#_{1}(w)^{2}$$
.
Proof: Let P be L_{2} 's pumping const.
Consider $O^{P}I^{P}$.
Then $y = O^{T}$ for some $t \ge 0$.
Hen $\sqrt{2}\sqrt{2} = O^{P+T}I^{P}$.
which is not in L_{2} . \square QED

Then xy'z = abca xy'z = abcbbca (xy^2z) = ab < bb c bb c a