~

•.

This is not a dragonalization proof
just a nice another of a connecting the cross product
of two countries infinite sets.
Goorg back to our shortlex enumeration, of storys over
$$\geq$$
.
Claim: \forall length i , $\exists |z|^{i}$ storys of that length.
 $i = 3$, $z = \frac{9}{9}a, b3$
 $f \neq T$
Claim: \forall storys $i \exists a$ finite number of storys
over \geq that precede it is shortlex order.
Proof: $\forall det |u| = i$.
 $\exists a$ finite \ddagger of longths j such that $j < i$
Each length.
Also, $\exists a$ finite \ddagger of storys of same length
 $as u > \overline{u}$
Note: Shortlex coordes on any alphabet
IF \exists on implicit ordering on the symbols of the
alphabet, you can impose one arbitrarily.
 $eg ~ \geq A, O, \Box J$
 $O < I$

$$\mathbb{R}$$
 = the set of real numbers. $\mathbb{R}_{E0,7} = \mathbb{R} \cap [0...]$
Claim: $\mathbb{R}_{E0,1}$'s not countable.
Proof: BWOC. $\mathbb{P} \mathbb{R}_{E0,1}$'s countable. Then \mathbb{R} an
enumeration:

Then the number 0.13331370...., constructed by taking each digit along the diagonal and adding 1 to it (mod 10) is not in the

Claim: The union of a countably infinite number of countable sets is countable.

It is "loose" because: - Some of the sets many "and vary" (be finite)

But a loose enumeration is OK.

Warning: If a problem (on assignment or test) asks you to show something is countably infinite by giving an enum. scheme I want to see the enumeration scheme, not the application of one- of the theorems above.