Recall from last time ? a bits ci i; j >0 } ~ Fid a Is that language inherently non-deterministic? a, $\varepsilon \rightarrow a$ b, $\varepsilon \rightarrow b$ b, $a \rightarrow \varepsilon$ c, $b \rightarrow \varepsilon$ c, $b \rightarrow \varepsilon$ c, $b \rightarrow \varepsilon$ aakbbbc 15 1/ more deterministic. $a, \varepsilon \rightarrow \varepsilon$ $b, \varepsilon \rightarrow b$ $c, b - \varepsilon$ $0 \varepsilon 0, \varepsilon 0, \varepsilon 0, \varepsilon$ Note Your text always use bottom of stack of E of E of E marker. () detect bottom of - stack. Sipser's debt of PDA accepting a string is a little different but equivalent. C, b→E a, E-)a 6,a >E 6,E >b $\rightarrow \mathcal{E}$ b, $\mathcal{E} \rightarrow \mathcal{E}$ b, $\mathcal{E} \rightarrow \mathcal{E}$ c, $\mathcal{E} \rightarrow \mathcal{E}$ E,E→\$ Q, b,a→E VE,\$→E b\$=⇒b\$t deterministic Can we always remove the non-determinism? Sabock | i=j or i=K]. This PDA has no $a, \varepsilon \rightarrow x$ $b, \tau \geq \varepsilon$ $c, \varepsilon \rightarrow \varepsilon$ deterministic $(\downarrow \xi, \xi \rightarrow \xi) (\downarrow \xi, \xi \rightarrow \xi) (\downarrow$ equivalent. $-\Theta^{c,x \to \varepsilon}$ 5232

Proof
$$I (\Rightarrow) \Leftrightarrow L$$
 is CF is has a CFG G_L .
Livent to show: $\exists a PDA$ that recognizes LJ
We will construct a PDA that simulates deriving a
string in the grammar G_L .
Eq. $\begin{cases} \Rightarrow a Sc \mid X \\ X \Rightarrow b X \mid E \end{cases}$
 $a a b cc$
 $\Rightarrow a b cc$
How the stack will be used.
 $\begin{cases} \Rightarrow a f c \\ f$

In general V CFG G= (V, Z, R, S) Z a Top-Down Parser PDA M that recognizes LCG) where $M = (\{ \{ q_0, f \}, Z, Z \cup V, \{ \}, q_0, \{ \} \})$ and where the transitions of S are as follows: $\delta(q_{\circ}, \varepsilon, \varepsilon) = \xi(f, S) \xi$ $\forall \sigma \in \mathbb{Z}, \ \delta(\mathfrak{F}, \sigma, \sigma) = \delta(\mathfrak{f}, \mathfrak{E}) \overline{\mathfrak{f}}.$ $\forall Z \in V, S(F, \varepsilon, z) = \bigcup_{T \to X} \mathcal{E}(F, T)\mathcal{F}$ Feb 9

Fulles
in R.
II (
$$\leq$$
) ¥ PDA^M = CFG G s.t. M reconsistent L(G)
First, simplify M so that:
L it has a single accept state.
a. each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol i Not both.
 a each transition EITHER = pushes a symbol is creatly variabler
 A pp = has the property that = a derivativity
 A pp = a a way M can go from state
 p to states p g or earling input abback
 P pairs of states p g or earling input abback is ϵ
 a pairs of states p g or earling input abback is ϵ
 a pairs of states p g or A rs b Remember:
 A pg inceases is shirter that can the M from p to g ."

 $A_{pq} \rightarrow A_{pr} A_{rq}$

App > E

Start symbol is : A qo gaccept