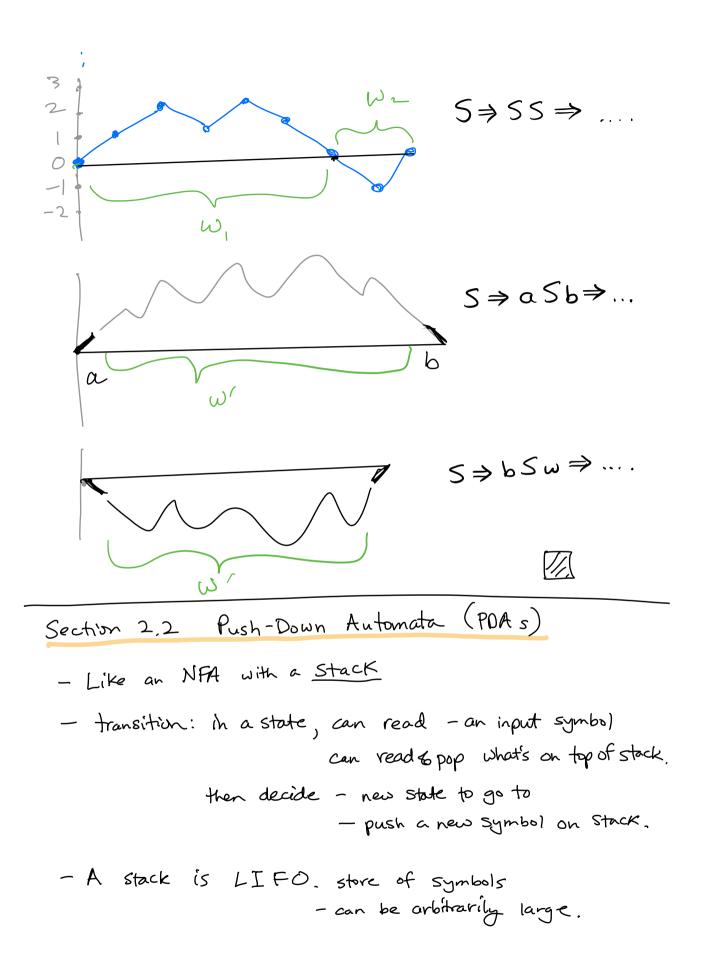
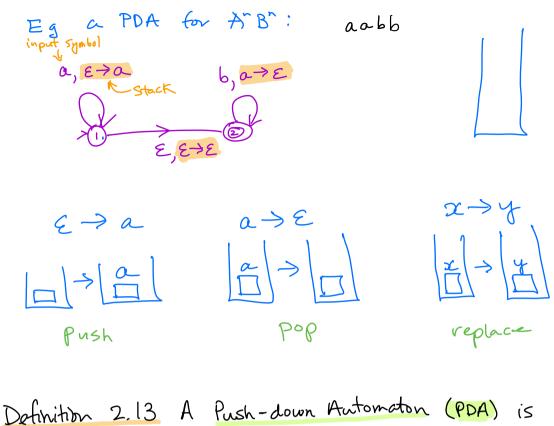
How to prove a CFG is correct for a L. Eq G: $S \rightarrow aSb | \epsilon$ $A^{*}B^{*} = \frac{1}{2}a^{*}b^{*} | n \ge 0$ $Claim: L(G) = A^{*}B^{*}$. $Proof I. L(G) \subseteq A^{*}B^{n}$ i.e. We must show that any w generated in G is of the form ab for some i. Let w be any string generated in G. $1. \ \omega = \varepsilon$, i.e. $\omega = ab$, or Then either 2. W = a w'b where W' is a smaller string generated from S Then by the Ind. Hyp., W' is of the form a b for some u Hence w=a·aibib = aibit, and wEAB or, more traditionally. claim: V WE L(G), W=abi for some i. Proof: By induction on the number of steps in a shortest leftmost derivation of W. Boois: Number of steps is 1 ie $\omega = \varepsilon$. ie $\omega = a^{\circ}b^{\circ} \varepsilon$ K>(Induction: Let us be any string derivable in K skps, Ind Hyp: V U' where w' is derivable in <k Steps, w'= a b for some i. Then w= a w'b. ... w' is derivable in <k sept. Then by the Ind Hyp, w'= a'b' for some $\omega = \alpha^{+1} b^{+1}$

I. A'B'
$$\leq L(G)$$

Let $\omega \in A^{n}B'$. Then $\omega = a'b'$ for some i.
Consider the following derivation of ω in G :
 $S \Rightarrow a Sb \Rightarrow aa Sbb \Rightarrow \dots \Rightarrow a'Sb' \Rightarrow a'b'$.
number of applications of rule \bigcirc is i .
Eg. $L_{i} \stackrel{<}{=} U \in \stackrel{\scriptstyle (a,b)}{=} \stackrel{\scriptstyle (a)}{=} \stackrel{\scriptstyle (a)$

ja a b a b b b a





a b-tuple
$$(Q, Z, \Gamma, S, q_0, F)$$
 where:
- Q is a finite set of states
- Σ is input alphabet
- Γ is a stack alphabet
- $S: Q \times Z_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is transition function
- $q_0 \in Q$ is start state
- $F \subseteq Q$ is set of accept states.
 Z_{ε} is $\Sigma \cup \{ \varepsilon \} = \Gamma \cup \{ \varepsilon \}$.
Note: the definition of PDA includes non-determinism.
Def: A string ω is accepted by a PDA M if \exists a
sequence of transitions M can make on input ω that
leads to a final state $\&$ empty stack $\&$ (no input)

