Warm
$$v_{p}$$
...
 $\{w \in \{0,1\}\} | w \text{ has both } OD \text{ and } II \text{ as substrugs}^{?}$
 $(0+i)^* 00(0+i)^* 11(0+i)^* + (0+i)^* (11(0+i)^* 00(0+i)^*)$

Let
$$Leq = \Sigma w \in Sable + \#_{a}(w) = \#_{b}(w)S$$
.
Claim: Leq is not regular.
Proof: BWOC. ΣLeq is regular. Then it
has a pumping constant P.
Consider the string ab'
 $ab' \in L$, and $|ab'| \ge p$ so by P.L.:
 $ab' = xyZ$ where $|y| > 0$, $|xy| \le p$ and
 $xy^{i}Z \in L$.
 $aaa...ab.bb..b$ $y = at$ for some
 tyt
 \Rightarrow pumping down once must yield another
string in Leq, by the P.L.
 $o a^{p-t}b^{p} \in L.$, $t \ge 0$
 $\Rightarrow (contradicts defn of Leq)$
 $o a'b' = aaaa...abbbb...b$

Balanced strings of Parentheses
Let
$$Bal = \Sigma \ w \in \Sigma(,) \}^{\star}$$
 the parens are $\{Bal = \Sigma \ w \in \Sigma(,) \}^{\star}$ the parens are $\{Balanced\}$
e.g. $((1)(), (1), ((1)), ((1))()(1)$
But NOT), $(1), ((1)), ((1))()(1)$
But NOT), $(1), ((1))((1)$
aside: what makes a string of pavens
"balanced"?
• $\#_{1}(\omega) = \#_{2}(\omega)$
• $\#_{2}(\omega) = \#_{3}(\omega)$
• $\#_{1}(5) \ge \#_{3}(5)$

Claim: Bal is not regular.
Proof: BWOC. S Bal is regular. Then it has
a pumping constant P.
Consider the string (P)
$$(((((.())))))$$

(P) P E Bal, and $|(P)^{P}| \ge P$.

oby P.L.,
$$\binom{p}{p} = xyz$$
 where $y \neq z$
and $|xy| \leq p$ and $xy^i z \in L \quad \forall i \geq 0$.
 $\Rightarrow y = \binom{t}{p}$ for some $t \geq 0$.
 $\Rightarrow xy^2 z \in Bal$ is $\binom{p+t}{p} \in Bal \quad by P.L$.
 $\Rightarrow \notin it is not balanced$.
 $\therefore Bal is not regular $\mathbb{Z}_{2}$$

Let EvenPal =
$$\sum w w^{R} | w \in \overline{a_{3}b_{3}}^{*} \xrightarrow{2}$$

Claim: EvenPal is not regular.
Proof: BWOC. \sum EvenPal is regular.
Then it has a pumping constant P .
Consider the string a bb of
a bba' \in EvenPal and labba' $l \ge p$; hence
a'bba' = xyz s.t. $|y|>0$, $|xy| \le p$, and
 $xyz \in EvenPal + i \ge 0$, is $y = a^{t}$ for some t>0
 $\Rightarrow a' bba' \in EvenPal$ is not regular []

Prime = {a' | n is prime } aa, aaa, aaaaa, ... Claim: Prime is not regular. Proof: BWOC. & Prime is regular. Then it has a pumping constant, call it P. Let q be smallest prime > P+1 $a^{q} \in Prime$, and $|a^{q}| \ge p$ so by P.L.: a⁴ = xyz where 1y1>0 1xy1 < p and xyze Prime ¥û≥0. i.e |x| i.ly| 1z| a.a.a.e.Prime #i=0. Note that $|x| + |z| \ge 2$. [How do we know this?] Take i= loct + 121. By P.L., a^{lx1}. (Ix1+121)×141 a 121 E Prime ie 1x1+1z1+(1x1+1z1)x1y1 is prime number. But it has a factor | \$1+141 which is \$2! =) = is not regular.

Closure Theorems for Regular Languages RL is closed under <u>O</u>, <u>U</u> complement, reverse.

Use closure theorems to get simpler proofs of non-regularity. AⁿBⁿ is not reg.

Claim: Leg is not regular. Proof: BWOC. & Leg is regular. Then SD is Leg () L(a*b*) = A^B^ i.e. SD is A^B^ $\Rightarrow \in$ (we already proved A^B^ is not reg) oo Leg is not regular.

and one of these & is beter behaved, easy to use P.L. on, or is already known to be Non-regular.