

Warm up ...

Jan 22, 2026

$\{w \in \{0,1\}^* \mid w \text{ has both } 00 \text{ and } 11 \text{ as substrings}\}$

$$(0+1)^* 00 (0+1)^* 11 (0+1)^* + (0+1)^* 11 (0+1)^* 00 (0+1)^*$$

$\{w \in \{a,b\}^* \mid w \text{ contains } \geq 2 \text{ b's that are not immediately followed by an a}\}$

$$(a+b)^* b b b (a+b)^* + (a+b)^* b b (a+b)^* b b (a+b)^* + (a+b)^* b b$$
$$+ (a+b)^* b b (a+b)^* b$$

Recall from last time...

Pumping Lemma:

\forall Reg language L (over an alphabet Σ)

\exists integer $p > 0$ such that

$\forall w \in L, |w| \geq p$, we have that

$\exists x, y, z \in \Sigma^*$ where $w = x y z$

and

1. $\forall i \geq 0 \quad x y^i z \in L$

2. $|y| > 0$

3. $|x y| \leq p$.

Note: Last time
 $A^n B^n$ is not regular

Let $L_{eq} = \{ \omega \in \{a,b\}^* \mid \#_a(\omega) = \#_b(\omega) \}$.

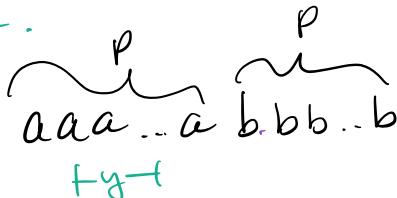
Claim: L_{eq} is not regular.

Proof: BWOC. If L_{eq} is regular. Then it has a pumping constant P .

Consider the string $a^P b^P$
 $a^P b^P \in L$, and $|a^P b^P| \geq P$ so by P.L.:

$a^P b^P = xyz$ where $|y| > 0$, $|xy| \leq P$ and

$xy^i z \in L$.



Observe:

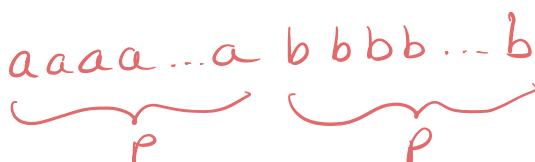
$y = a^t$ for some $t > 0$.

\Rightarrow pumping down once must yield another string in L_{eq} , by the P.L.

$\therefore a^{P-t} b^P \in L$, $t > 0$

\Rightarrow (contradicts defn of L_{eq})

$\therefore L_{eq}$ is not regular. \square

$a^P b^P =$ 

Balanced Strings of Parentheses.

Let $\text{Bal} = \{ w \in \{(),)\}^* \mid \text{the parens are balanced} \}$

e.g. $((())()$, $(()$, $((())$, $((()())())()$

But NOT $)$, $)()$, $((())())()$

aside: what makes a string of parens

"balanced"?

$$\bullet \#_c(w) = \#_s(w)$$

$$\bullet \forall \text{ prefixes } s \text{ of } w, \#_c(s) \geq \#_s(s)$$

Claim: Bal is not regular.

Proof: Bwoc. \nsubseteq Bal is regular. Then it has

a pumping constant P .

Consider the string $(^P)^P$

$(^P)^P \in \text{Bal}$, and $|(^P)^P| \geq P$.

∴ by P.L., $(^p)^p = xyz$ where $y \neq \epsilon$

and $|xyz| \leq p$ and $xy^iz \in L \forall i \geq 0$.

$\Rightarrow y = a^t$ for some $t > 0$.

$\Rightarrow \underline{xyz} \in \text{Bal}$ ie $(^{p+t})^p \in \text{Bal}$ by P.L.

\Rightarrow it is not balanced.

∴ Bal is not regular \square

Let EvenPal = $\{ww^R \mid w \in \{ab\}^*\}$

Claim: EvenPal is not regular.

Proof: By contradiction. Suppose EvenPal is regular.

Then it has a pumping constant p .

Consider the string $a^p b b a^p$

$a^p b b a^p \in \text{EvenPal}$ and $|a^p b b a^p| \geq p$; hence

$a^p b b a^p = xyz$ s.t. $|y| > 0$, $|xyz| \leq p$, and

$xy^iz \in \text{EvenPal} \forall i \geq 0$. ∴ $y = a^t$ for some $t > 0$

$\Rightarrow a^{p-t} b b a^p \in \text{EvenPal}$

\Rightarrow ∴ EvenPal is not regular \square

Prime = $\{a^n \mid n \text{ is prime}\}$. aa, aaa, aaaaa, ...

Claim: Prime is not regular.

Proof: BWOC. \nsubseteq Prime is regular.

Then it has a pumping constant, call it p .

Let q be smallest prime $> p+1$

$a^q \in \text{Prime}$, and $|a^q| \geq p$ so by P.L.:

$a^q = xyz$ where $|y| > 0$, $|xy| \leq p$ and $xy^iz \in \text{Prime}$
 $\forall i \geq 0$.

i.e $a^{|x|} \cdot a^i \cdot a^{|z|} \in \text{Prime} \quad \forall i \geq 0$.

Note that $|x| + |z| \geq 2$. [How do we know this?]

Take $i = |x| + |z|$.

By P.L., $a^{|x|} \cdot a^{|z|} \cdot a^{(|x|+|z|) \times |y|} \cdot a^{|z|} \in \text{Prime}$.

i.e $|x| + |z| + (|x| + |z|) \times |y|$ is prime number.

But it has a factor $|x| + |y|$ which is ≥ 2 !

$\Rightarrow \nsubseteq$ \therefore Prime is not regular.

Closure Theorems for Regular Languages

RL is closed under \cap , \cup , complement, reverse.

Use closure theorems to get simpler proofs of non-regularity. $A^n B^n$ is not reg.

Claim: L_{eq} is not regular.

Proof: BWOC. $\$ L_{eq}$ is regular.

Then so is $L_{eq} \cap L(a^* b^*)$

i.e. so is $A^n B^n$

$\Rightarrow \Leftarrow$ (we already proved $A^n B^n$ is not reg)

$\therefore L_{eq}$ is not regular. \square

We can use closure theorems...

given a difficult L , Suppose it is reg.

Then so is $L \cap$ some known reg lang

and \bar{L}

and $L \cup$ some known reg lang

And one of these λ is better behaved, easy to use P.L. on, or is already known to be Non-regular.