

Theorem: A language is regular iff \exists a r.e. that describes it.

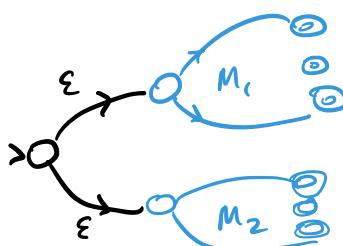
Proof: (\Leftarrow i.e $\text{re} \rightarrow \text{NFA}$)

1. σ , $\sigma \in \Sigma$

2. ϵ

3. \emptyset

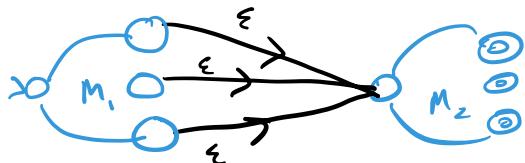
4. $(R_1 + R_2)$



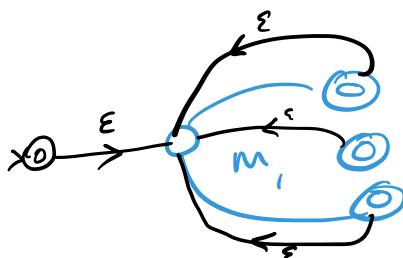
$$L(M_1) = L(R_1)$$

$$L(M_2) = L(R_2)$$

5. $(R_1 \cdot R_2)$



6. (R_1^*)

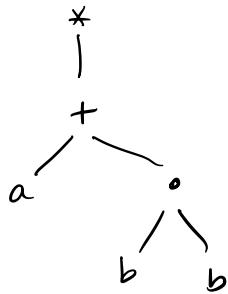
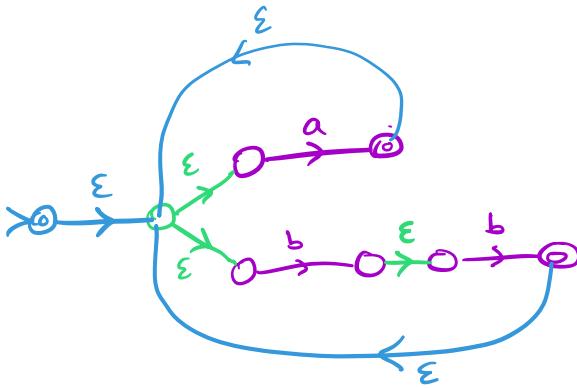


The resulting FA clearly accepts the language described by the r.e. \square

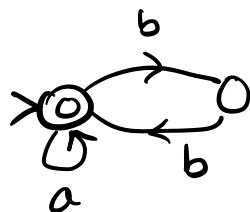
Aside: Let's do an example.

Using the construction:

$(a + bb)^*$



"Grok + Blurt" method:



can be a NFA without ϵ -transitions

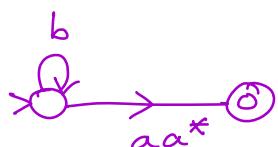
II. (\Rightarrow : $\text{FA} \rightarrow \text{r.e.}$) Construction

Goal: given a FA M , construct a r.e. R

such that $L(M) = L(R)$.

To do this, we invent something we will call

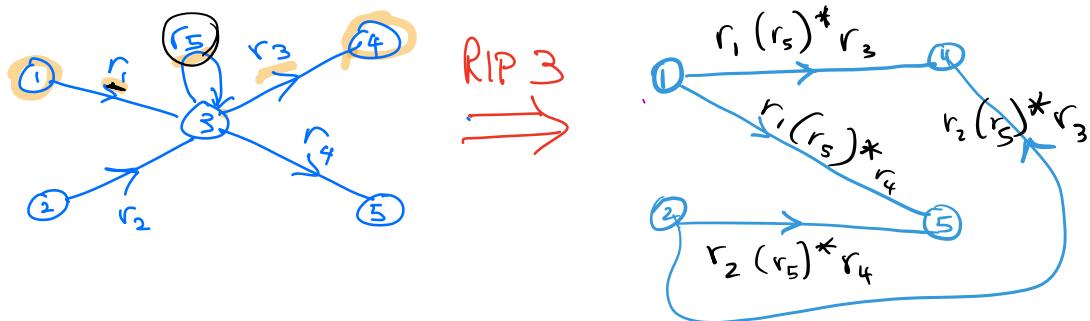
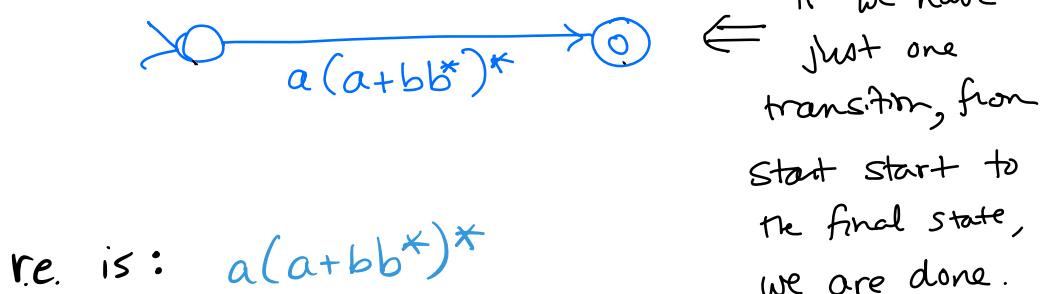
a "generalized FA", where the transitions are labelled with r.e.'s.



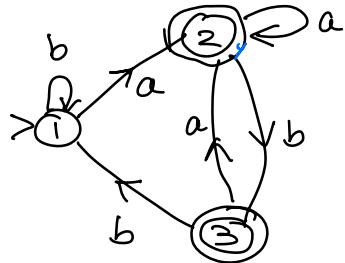
We step-by-step some state and replace the affected paths with new r.e.'s.

FA -to- RE: Given a FA M

1. Ensure start state has no "in" edges.
- add a new state if necessary... while ensuring the gen-FA accepts the same language
2. Ensure \exists a single accept state w/ no "out" edges - introduce a new state if necessary... while ensuring etc.
3. While $\exists > 2$ states:
RIP a state that is neither start nor accept.

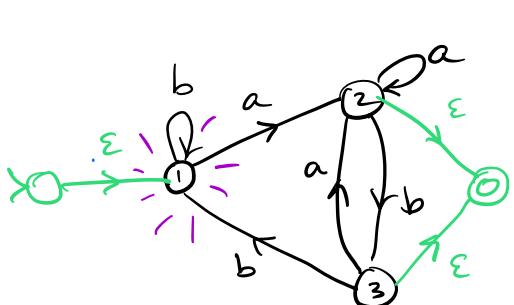
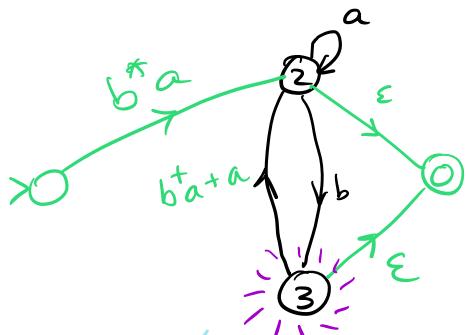
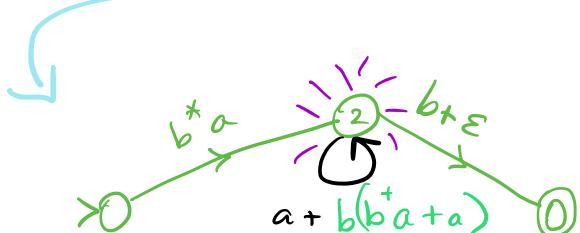


Eg



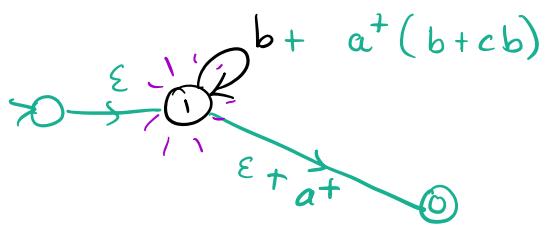
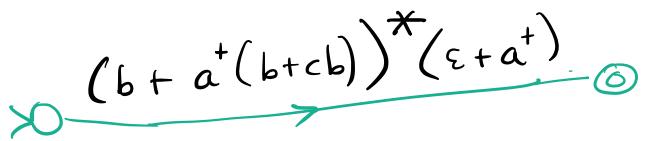
Grat + Blurt:

$$(b^*a)^+ (b + \varepsilon)$$



$$b^*a (a + b(b^*a + a))^* (b + \varepsilon)$$

r.e. is $b^*a(a + b(b^*a + a))^*(b + \varepsilon)$



re is $(b + a^+ (b + cb))^* a^*$