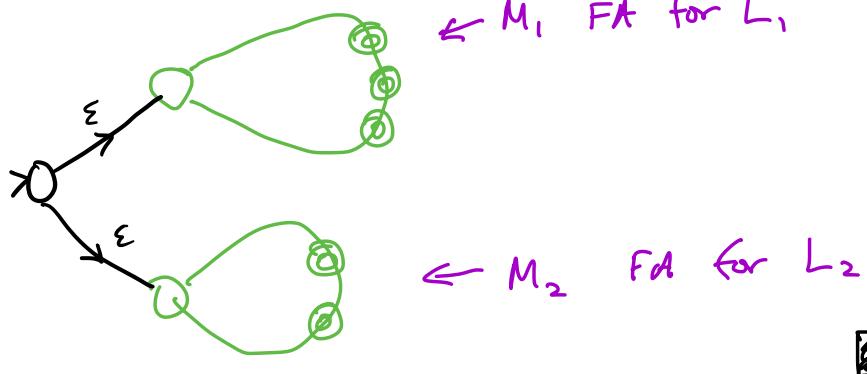


The class RL is closed under
Union, concat, *

Jan 16
2025

Theorem: RL is closed under \cup

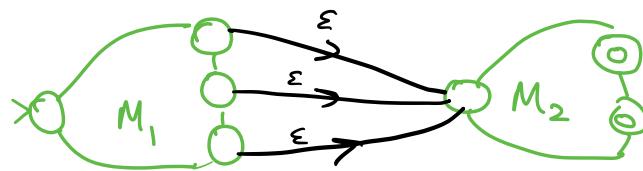
Proof:



Theorem: RL is closed under \circ

Proof:

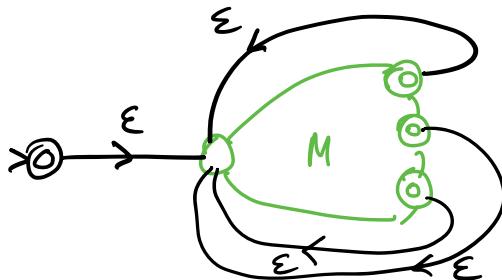
$$L_1 = \{\text{dog, cat}\} \quad L_2 = \{\text{bowl, fur}\} \quad L_1 \circ L_2 = \{\text{dogbowl, catbowl, dogfur, catfur}\}$$



Want: FA for $L(M_1) \circ L(M_2)$

Theorem: The class RL is closed under $*$.

Proof:



Want: FA that
accept
 $(L(M))^*$

Aside: $(L(\emptyset))^* = \{\epsilon\}$.

Section 2.7 Regular Expressions

Eq of r.e.'s over $\Sigma = \{0, 1\}$

\cup + \equiv "or"
"union"

$$(0 \cup 1)0^* \quad |(1 \cup 10)^*$$

$$(0+1)0^* \quad |(1+10)^* \leftarrow \text{we will use '+' for '}\cup\text{'}$$

$$(0+1)^* 1$$

awk, grep, perl, REGEX, Excel - all use some form.

Syntax of r.e's over Σ .

Defn: R is a r.e. over Σ if R is one of:

1. σ , $\sigma \in \Sigma$
 2. ϵ
 3. \emptyset
 4. $(R_1 + R_2)$ where R_1 and R_2 are r.e.s
 5. $(R_1 \cdot R_2)$ " " " " "
 6. (R_1^*) where R_1 is an r.e.
- } these are the base cases

Nothing else is a r.e.

Note: This defn is recursive.

eg: $\Sigma = \{0, 1\}$ $\rightarrow 1$ $((1 \cdot 1)^*)$
 $\begin{array}{c} + \\ * \\ + \\ 0 \end{array}$ $\begin{array}{c} (1+0) \\ ((1+0)^*) + ((1 \cdot 1)^*) \\ \dots \end{array}$

Technically, for every $+, *, \cdot$ \exists a pair of parens.

Semantics of a r.e:

A r.e denotes a language $L(r)$

where

1. $L(\sigma)$ $\sigma \in \Sigma$ is $\{\sigma\}$
2. $L(\epsilon)$ is $\{\epsilon\}$
3. $L(\phi)$ is $\{\}$
4. $L(R_1 + R_2)$ is $L(R_1) \cup L(R_2)$
5. $L(R_1 \cdot R_2)$ is $L(R_1) \cdot L(R_2)$
6. $L(R_1^*)$ is $(L(R_1))^*$

Conventions:

- replace \cdot with juxtaposition
 - precedence of operators will allow us to drop $(,)$.
except when we want to enforce an eval order.
1. $*$ 2. \cdot 3. $+$

Hence $a + ba \stackrel{(a+b)a}{\leftarrow} a + (ba) ?$

$$ab^* \xleftarrow{\quad} (ab)^* \quad ?$$

$$a(b^*)$$

Also Σ is allowed as a r.e.

$$\Sigma = \{a, b, c\} \quad \text{then} \quad \Sigma^a = \{aa, ba, ca\}^?$$

Σ^* = all strings over Σ .

$$\text{Let } \Sigma = \{a, b\}$$

"ends in a "

" b is immediately followed by a "

"contains aab as substring"

"does not contain aab as substring"

.....

Aside: Recursive Definitions.

Defn A string w over Σ (" $w \in \Sigma^*$ ") is

1. ϵ

2. $w'\tau$ where $\tau \in \Sigma$, $w' \in \Sigma^*$.

Nothing else is a string over Σ .

Defn: for $w \in \Sigma^*$ $|w|$ ("length of w ") is given by:

1. $|\epsilon| = 0$

2. $|\underline{\sigma w}| = 1 + |w|$

Other notational conveniences and notes

- Complement $\bar{L} = \Sigma^* \setminus L$
- $\{\epsilon\}$ is a language, $|\{\epsilon\}| = 1$ whereas $|\emptyset| = 0$

Ex. Give a r.e. for $\overline{L(\epsilon)} \quad \Sigma \cdot \Sigma^* = \Sigma^+$

- α^+ is a notation we will use in r.e.'s to mean
"at least one α (or string generated from α),
concatenated together"

$$L(\alpha^+) = \begin{cases} L(\alpha^*) & \text{if } \epsilon \in L(\alpha) \\ L(\alpha^*) & \text{otherwise} \end{cases}$$

- precedence of \wedge^+ is same as \wedge^*

$$abb^* \approx ab^+ \quad ab^*$$

"a followed by
at least one b"

"a followed by
0 or more b's"

r.e.'s

Informal: "a number of a's followed by at least one b"

Formal description: $L_1 = \{w \in \{a, b\}^* \mid w \text{ consists of a (possibly empty) block of a's followed by a non-empty block of b's}\}$

an r.e. for L_1 : a^*b^+

$L_2 = \{w \in \{0, 1\}^* \mid \text{all odd positions in } w \text{ are 0}\}$

$L_3 = \{w \in \{0, 1\}^* \mid \#_0(w) \text{ is even}\}$

$L_4 = \{ w \in \{a, b, c\}^* : \text{at least one of } a, b, c \text{ is not in } w \}$