

Jan 13
2026

Non-deterministic Finite Automata

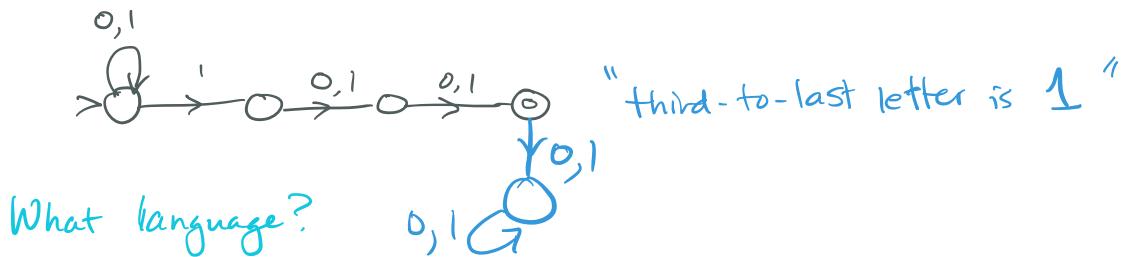
So far, we have required that for every $\sigma \in \Sigma$, and every state in our FA, we have a transition that will tell us what to do when we see σ in that state.

What if we allow 0 or more options of what to do on seeing σ while in state q ?

Such an automaton is called a **Non-deterministic Finite Automaton (NFA)**.

- a DFA is a special case of an NFA.

NFAs - Non-deterministic FAs.



The NFA "lucky-guesses" when it is about to see the third-last symbol, and **verifies** that the letter is indeed a 1.

Another thing a NFA can do is make a transition on ϵ .



Construct a NFA for "either ends in ab or $\#_a(w)$ is odd"

Defn A NFA is a 5-tuple $(Q, \Sigma, \delta, s, F)$

Where:

Q is a finite set of states

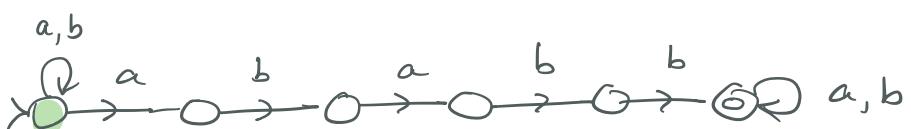
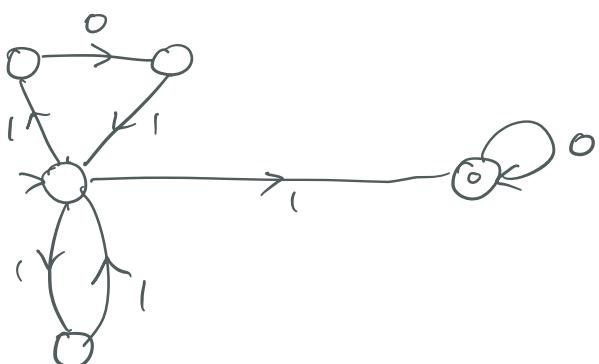
Σ is an alphabet

$\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$ is transition function

$s \in Q$ is start state

$F \subseteq Q$ is set of accept states.

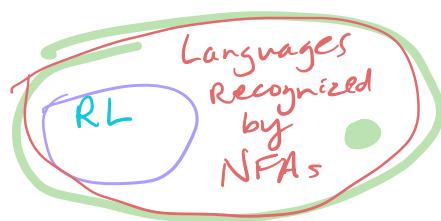
Recall - an NFA accepts a string if \exists a computation on that string that ends at a final state ... There might be other computations that end at non-final states.



what language?

for FAs: Does non-determinism make our model more powerful? I.e. are there languages we can program a NFA to recognize that no DFA can recognize?

[Note: DFA is a special case of NFA ...]



An NFA that has no ϵ -transitions and has 0 or 1 choice of what to do in each state on each symbol is a DFA.

Theorem 1.39 \forall NFA has an **equivalent** DFA

Note: by "equivalent", we mean "recognizes the same language".

Proof: Once again, I am going to give you a **construction** that converts a NFA into a DFA ... You should convince yourself it works

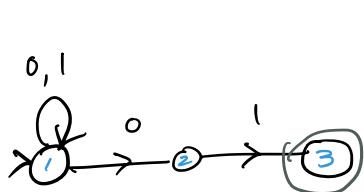
Or read the more detailed proof in text.

Idea: A DFA, on input w , has a computation sequence $(q_0, \sigma_1 \dots \sigma_n) \vdash (q_1, \sigma_2 \dots \sigma_n) \vdash \dots \vdash (q_n, \varepsilon)$

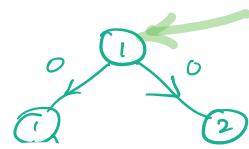
What does a NFA have, on input w ?

There are many possible paths the computation can take.

We can represent them in a tree, something like a decision tree



input = 00101



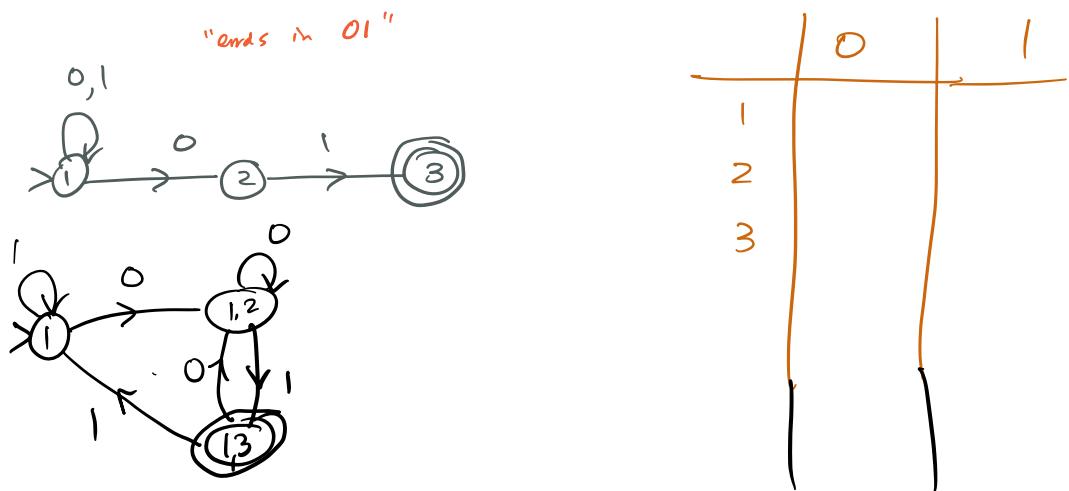
0 1 . 0
- . 1 \ 0
1 1

We are going to design a DFA that simulates all possible computations at once...
we will use our DFA-state to keep track of all possible states we could be in, in the NFA, at that

particular point in consuming the input

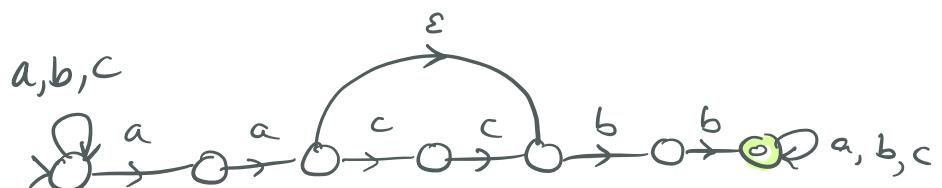
- after reading ϵ , we can be in state 1
- after reading 0 we can be in 1 or 2
- after reading 00 we can be in 1 or 2

⋮
etc

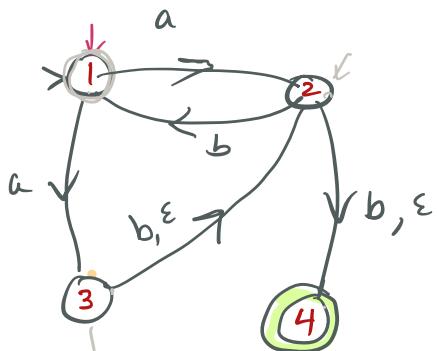
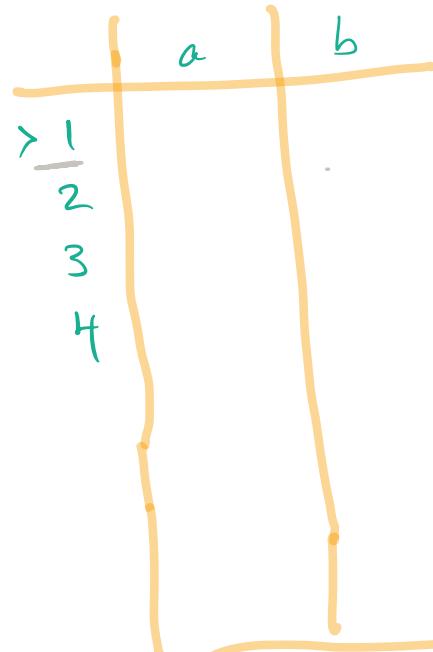


A look at how to use ϵ -transitions

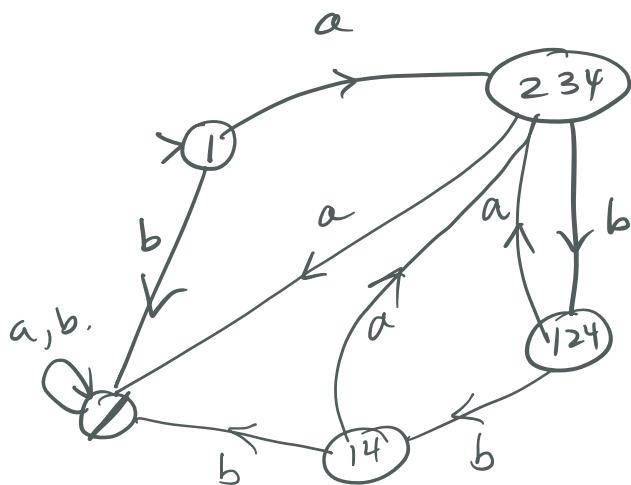
Eg "contains aa bb or aacc bb" $\Sigma = \{a, b, c\}$



A smaller example for conversion to DFA.



Remember to mark
Start state
and
Final states

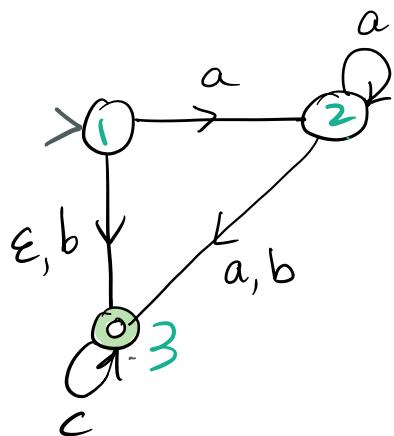


The above-given method converts any NFA into an equivalent DFA.

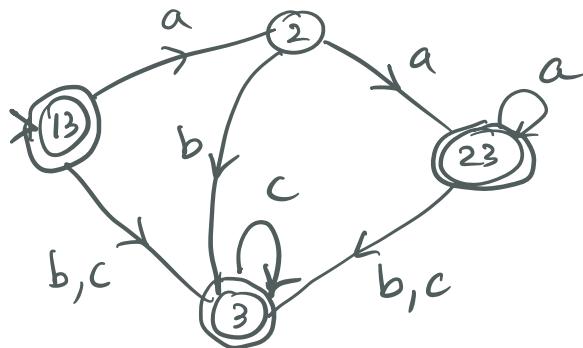
obvious when you think about it...

because the computation path in the DFA will carry all possible computation paths in the original NFA.

How do we handle ϵ -transitions from start state?



	a	b	c
1	2	3	\emptyset
2	23	3	\emptyset
3			



Start state
contains all
states you
can get to
from original

State using only
 ϵ -transitions.

Now that we know that every NFA also
recognizes a language that is Regular

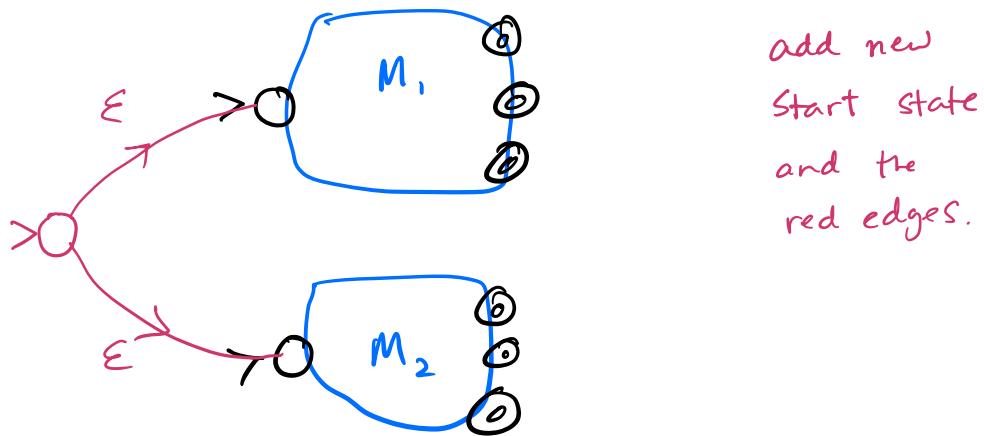
↑
is recognized
by some DFA

We can prove more easily:...

Theorem 1.45 RL is closed under \cup

Proof: Let L_1 and L_2 be RLs.

$\therefore \exists M_1$ and M_2 , DFAs that recognize
 L_1 and L_2 , respectively.

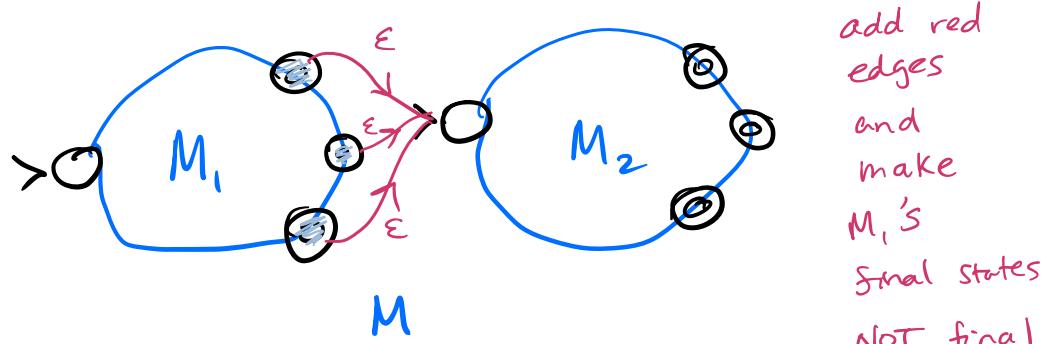


add new
Start state
and the
red edges.

Theorem 1.47 RL is closed under \circ

Proof: Let L_1 be a RL , recognized by FA M_1 ,
 L_2 " " " " FA M_2

Then we construct the following NFA M



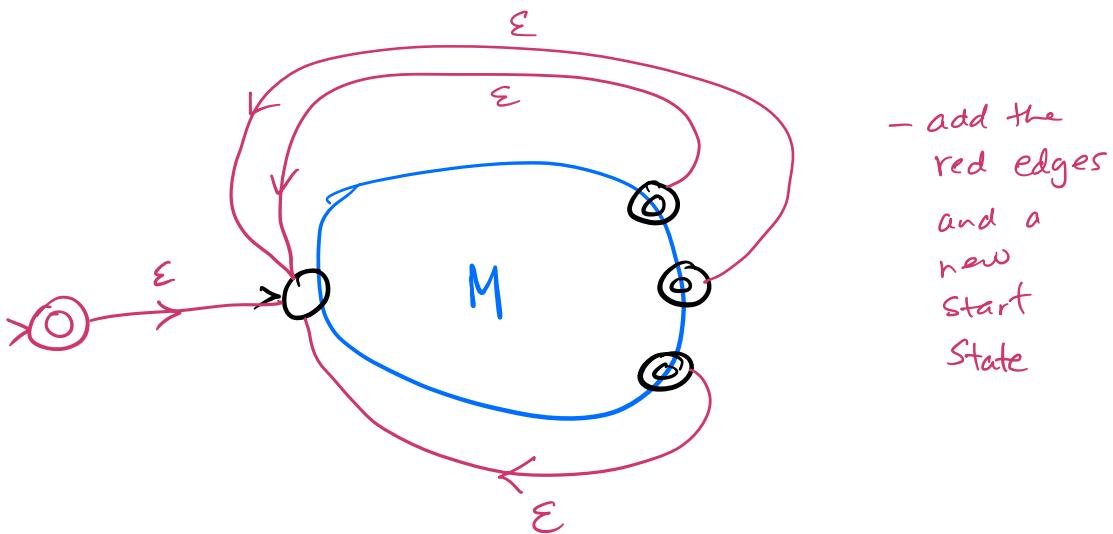
add red
edges
and
make
 M_1 's
final states
NOT final

M recognizes $L_1 \circ L_2$

Theorem 1.49 RL is closed under $*$

Proof: Let L be any language in RL .

By defⁿ of RL, \exists a FA M that recognizes L.
 we construct a new NFA M' from M as follows:



M' recognizes L^* .

Q. Why did we add a new start state? What kind of trouble could we get into if we just made the old start state into a final state? Come up with a FA that would lead us into that trouble.