
Jan 13 Non deterministic Finite Automata
2026

So far we have required that for every J
E Σ

and every state in our FA we have a transition

that will tell us what to do when we see J in

that state

What if we allow 0 or move options of

what to do on
seeing

a while in state q

Such an automaton is called a Non deterministic
Finite Automaton NFA

a DFA is a special case of an NFA



NFAs Non deterministic FAs

0 0 0 third to last letter is 1

891
What language 0 G
The NFA lucky guesses when it is about to

see the third last symbol and verifies that the

letter is indeed a 1

A.aa.imother thing a NFA can do is make a

transition on E

abic What language

Σ a b c d

a b d
we a b c d at least

a c d onesymboldestly
QQ b c d

has w 0

Construct a NFA for either ends in ab or

w is odd

flatfoots102b



Deft A NFA is a 5 tuple Q Σ S S F

Where

Q is a finite set of states

Σ is an alphabet

8 Qx Σ v E P Q is transition function

S E Q is start state

F Q is set of accept states

exists

Recall an NFA accepts a string if a computation

on that string that ends at a final state There

might be other computations that end at non final states

a b

85 0 io o oosa.is

Ia
1

1

what language



for FAs Does non determinism make our

model more powerful I e are there languages

we can program
a NFA to recognize that

no DFA can recognize

Latte DEA is a special case of NFA

An NFA that

has no E transitions

and has 0 or 1
choice of what to do

in each state on each

symbol is a DFA

Theorem 1.39 NFA has an equivalent DFA

Note by equivalent we mean recognizes the same

language

Proof Once again I am going to give you

a construction that converts a NFA into a

DFA You should convince yourself it works



or read the more detailed proof in text

Idea A DFA on input w has a computation

sequence go T.tn q a.tn qn E

What does a NFA have on input w

many possible paths
the computation can take

We can represent them in a tree something

like a decision tree

on 88
Whole

input 00101 t iffoot
Ao
Taifoto_

We are going to design a DFA that simulates

all possible computations at once

we will use our DFA state to keep track of

all possible states we could be
in in the NFA at that



particular point in consuming the input
after reading E we can be in state 1

after reading 0 we can be in 1 o r 2

after reading 00 we can be in 1 or 2

Etc
ends in 01

0,1 I
00

if
11

A look at how to use E transitions

Eg contains aabb or aacobb Σ a b c

A b c

Ffosa.sc



A smaller example for conversion to DFA

a
a b

J 1
keyat Yb e

3

4

Rule
In building the DFA

table consider all possible

States you could get to on

reading an a say and
start state

then with or more e transitions

2340

IT ti



The above given method converts any NFA

into an equivalent DNA II

obvious when you think about it

because the computation path in the DFA will

carry all possible computation paths in the original

NFA

How do we handle E transitions

from start state

a

0

112.31T
2

E.by a b

83
C

I



Q a
start state

contains all

states you
b c

can get to

from original
state using only
E transitions

Now that we know that every NFA also

recognizes a language that is Regular
ist recognized

by some
DFA

We can prove more easily

Theorem 1.45 RL is closed under U

Proof Let L and La be RLs

M and Ma DFAs that recognize

L and L2 respectively



add new

start state

and the
red edges

m

Theorem 1.47 RL is closed under

Proof Let L be a RL recognized by FA M

L2 11 FA Mz

Then we construct the following NFA M

add red
edges

00M
and
makeof ms
final States

M NOT final

M recognizes L L2



Theorem 1.49 RL is closed under

Proof Let L be any language
in RL

By deft of RL F a FA M that recognizes L

we construct a new NFA M from M as follows

red edges
if

man

and a

new
start
State

M recognizes
LA MA

Q Why did we add a new start state

What Kind of trouble could we get into if

we just made
the old start state into a

final state Come up with a FA

that would lead us into that trouble


