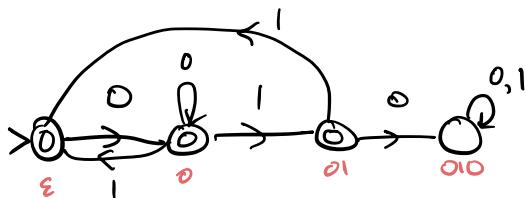



How to construct a DFA  $D$  that accepts  $L(M_1) \cup L(M_2)$ , where  $M_1$  and  $M_2$  are DFAs.


Eg  $M_1$ :



$$L(M_1) = \{ w \in \{0,1\}^* \mid$$

3

$M_2$ :



"length  $\equiv_3 0$ "

$\times 0$

0

0

$\epsilon$

"length  $\equiv_3 1$ "

0

0

0

0

"length  $\equiv_3 2$ "

0

0

0

0

0

0

0

01

0

0

0

010

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1) \leftarrow \text{a DFA}$$

$$M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2) \leftarrow \text{a DFA}$$

Then we can construct a DFA  $M$  that accepts  $L(M_1) \cup L(M_2)$  as follows:

$$M = ( \quad x \quad , \quad , \quad \delta, ( \quad ), \quad , \quad x \quad \cup \quad x \quad )$$

$$\text{where } \delta(( \quad ), \quad ) =$$