

Tutorial: DFA, NFA.

What we were calling a FA will now be called a DFA - Deterministic Finite Automaton.

- exactly one transition can be made at each point in the computation, while \exists input to be processed.

Exercises and Homework and Assignments.

Exercises - pointers to problems (usually in the text) that you can work on to learn the material

Homework - problems I assign you, NOT for handing in. I expect you ask questions if you run into difficulties.

Assignment - problems for you to do and for you to hand in - marked results will contribute to your grade

However - I will typically assign about 4 questions and mark about 2.

Exercises: Last week we did 2.1

This week, do 2.2 and 2.3

Defn: For $x, \omega \in \Sigma^*$, x is a substring of ω if $\exists u, y \in \Sigma^*$ such that $uxy = \omega$

E.g. $abcab = \omega$ then ab is a substring of ω
So is bca

"prefix"
"suffix"
So is $abcab$
So is ϵ .

How to devise substring detector DFAs.

Let $\Sigma = \{a, b\}$ for the FAs here, unless o.w. stated.

1. has "a" as a substring

2. has "ab" as a substring

3. has "aa bb" as a substring

4. has "abaab" as a substring

5. has "ababbab" as a substring.

How to convert a DFA that recognizes L
into one that recognizes \overline{L} .

"contains aab as a substring"

"does not contain aab as a substring".

Problems for us to work on today: 2.1 in text.
Some more, if we have time:

Assume $\Sigma = \{a, b\}$. Give DFA's.

1. $\{w \mid w \text{ does not contain exactly two } a's\}$.

2. $\{w \mid w \text{ ends in } ab \text{ or in } ba\}$.

3. $\{w \mid \text{every odd position is an } a\}$

4. $\{w \mid w \text{ contains at least } 3 a's\}$

Give NFAs of the following size: $\Sigma = \{0, 1\}$

5. $\{w \mid w \text{ ends in } 011\}$, 4 states.

6. $\{\epsilon\}$, 1 state.

7. Give a NFA or DFA for :

$\{ w \in \{0,1\}^* \mid |w| \equiv 2 \pmod{3} \text{ and}$
 $2^{\text{nd}} \text{ last symbol is } 0 \}$

1. "not exactly 2 as", $\Sigma = \{a, b\}$

2. "ends in ab or ba" $\Sigma = \{a, b\}$

3.

a b a a a b a ...

1st 3rd 5th. 7th etc

All the odd positions in The string
must be "a"

Note - only applies to existing positions
 ϵ has no odd positions, so all its odd
positions are "a"

4. $\{w \in \{a,b\}^* \mid w \text{ contains } \geq 3 \text{ a's}\}$

5. NFA for $\{w \in \{0,1\}^* \mid w \text{ ends in } 00\}$,

3 states:

6. $\{\epsilon\}$, 1 state NFA:

Note: This is also a DFA
under our convention that
missing transitions go to dead
state