

6

Regular Languages

Defⁿ: A language is regular if some FA recognizes it.

Defⁿ: Let **RL** denote the class of regular languages.

$\{w \in \{0,1\}^* \mid w \text{ has an even number of 0's}\} \in RL$.

i.e:

$\{w \in \{0,1\}^* \mid \#_0(w) \text{ is even}\} \in RL$

Regular Languages

We were introduced last lecture to $\cup, \cdot, ^*$, operations on languages that are the "regular" operations.

We also discussed when a set is closed under a (unary or binary) operation.

Defⁿ The closure of a set A under operation f is the smallest superset of A that is closed under f .

E.g. what is the closure of $N = \{1, 2, 3, 4, 5, \dots\}$ under...

+

-

negation

\times (mult)

\div

What is the closure of $\{aa\}$ under:

•

What is the closure of $\{a, b\}$ under:

•

Another math notation that will be useful to recall:

$Q_1 \times Q_2$ = the set of ordered pairs of states,
- first is from Q_1 ,
- second is from Q_2 .

function "types" are usually written

$$\delta: Q \times \Sigma \rightarrow Q$$

eg $\delta(q_0, a) = q_1$

$\delta(q_1, a) = q_0$

