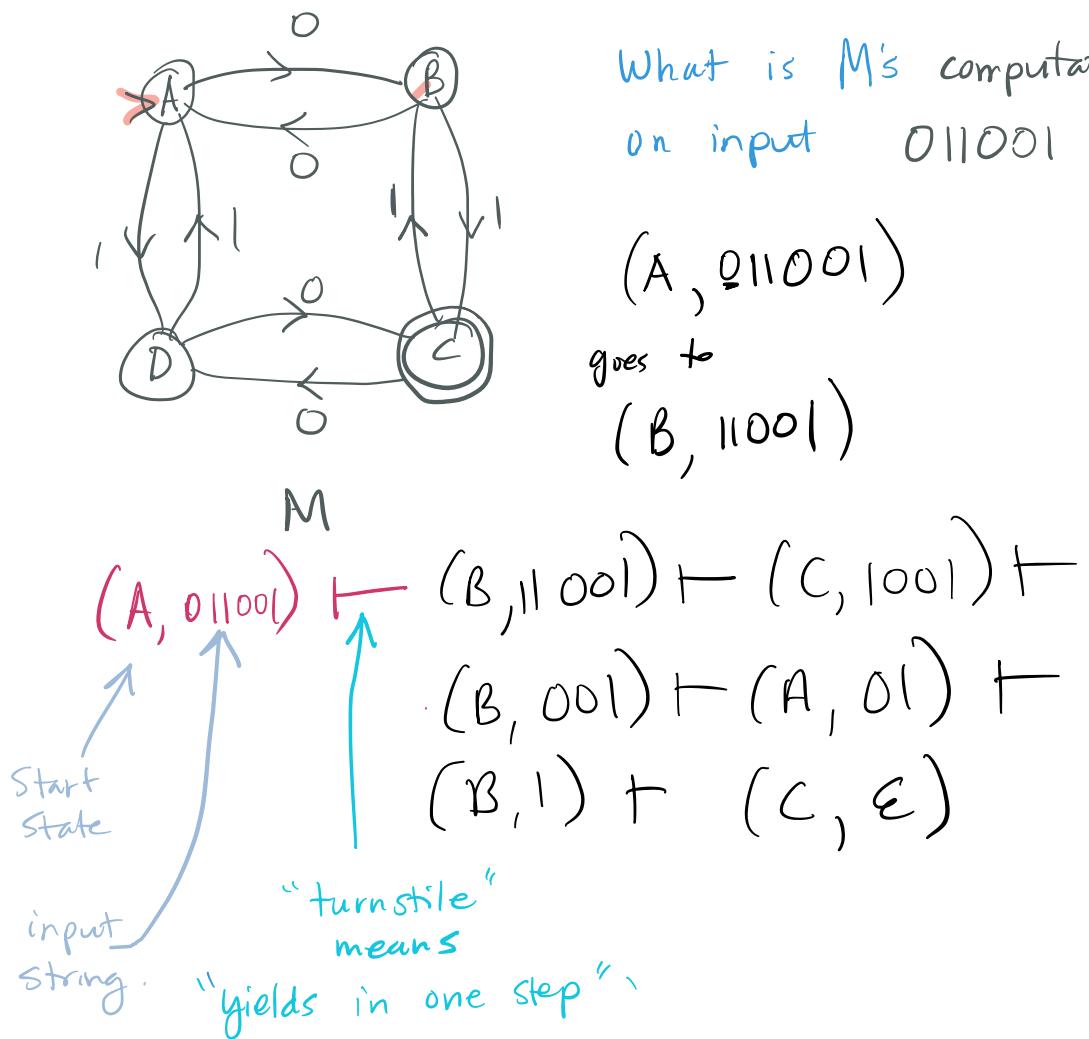


Definition of a Computation
for Finite Automata

Jan 9, 2026
①



Defⁿ : An accepting computation is one that consumes all the input and ends at a state $f \in F$
 (in)
 the set of accepting states

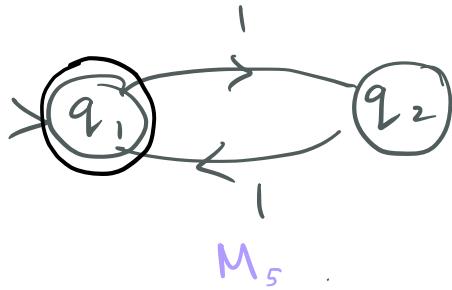
In other words (and more formally), a string w is accepted by a FA $M = (Q, \Sigma, \delta, q_0, F)$ if there is a computation that starts at (q_0, w) and ends at (f, ϵ) , $f \in F$.

i.e. $(q_0, w) \vdash \dots \vdash (f, \epsilon)$ where $f \in F$.

i.e. $(q_0, w) \vdash^* (f, \epsilon)$, where $f \in F$.

"yields in 0 or more steps"

$\Rightarrow \Leftarrow a, b, c$



Claim: For any string w of 1's run on M_5

$(q_1, w) \xrightarrow{*} (q_1, \epsilon)$ if $|w|$ is even
 and $(q_1, w) \xrightarrow{*} (q_2, \epsilon)$ if $|w|$ is odd.

Proof: By induction on $|w|$

Base: If $|w|=0$ then $w=\epsilon$ and $\leftarrow 0 \text{ is even}$

$(q_1, \overset{w}{\cancel{\epsilon}}) \xrightarrow{*} (q_1, \epsilon)$. i.e. claim holds.

Ind Hyp: Suppose claim holds for
 $w = 1^{n-1}$, $n > 0$.

Induction Step: Let $w = 1^n$

if n is odd, then $n-1$ is even

so $(q_1, 1^{n-1}) \xrightarrow{*} (q_1, \epsilon)$ by Ind Hyp

hence

$$(q_1, 1^{n-1} \cdot 1) \vdash^* (q_1, \varepsilon \cdot 1)$$

$$\vdash (q_2, \varepsilon).$$

so 1^n is NOT ACCEPTED if n is odd.

On the other hand, suppose n is even.

Then $n-1$ is odd, and

$$(q_1, 1^{n-1}) \vdash^* (q_2, \varepsilon) \text{ by } \underline{\text{Ind Hyp}}$$

hence

$$(q_1, 1^n) \vdash^* (q_2, \varepsilon \cdot 1)$$

$$\vdash (q_1, \varepsilon)$$

∴ if n is even, 1^n is ACCEPTED.

Restated: $L(M_5) = \{1^n : n \text{ is even}\}.$

111...1
n times

