

5. "Closure" and "Closed"

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

$$\mathbb{W} = \{0, 1, 2, \dots\}$$

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

$$\mathbb{Q}^+ = \left\{ \frac{a}{b} : a, b \in \mathbb{N} \right\}$$

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \neq 0 \text{ and } b \in \mathbb{Z} \right\}.$$

Defn: A set S is "closed under" an operation \blacksquare
if

$$\forall a, b \in S, a \blacksquare b \in S$$

(supposing \blacksquare to be a binary operation)

Eg: Is \mathbb{N} closed under $+$?
Is \mathbb{N} closed under $-$?

Is \mathbb{W} closed + ? - ?

Is \mathbb{Q}^+ closed under "recip" function
 $\text{recip}(x) = \frac{1}{x}$?

(We can extend "closed under" to unary ops)

Is \mathbb{Q} closed under negation?

Is \mathbb{Z} closed under negation?

Defn: For a set S , the "closure of
under \blacksquare " is the set

$$S \cup \{x \blacksquare y : x, y \in S\}$$

Eg the closure of \mathbb{N} under "+" is \mathbb{N}

the closure of \mathbb{N} under "-" is \mathbb{Z}

the closure of \mathbb{N} under " \div " is \mathbb{Q}^+

Consider an alphabet $\Sigma = \{a, b, c\}$.

What is the closure of Σ under concat " \cdot "?

$$= \{ \omega \in \Sigma^* \mid |\omega| \geq 1 \}.$$

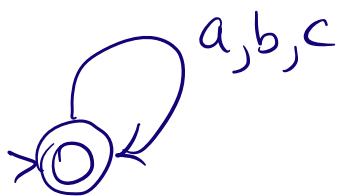
= "all nonempty strings over $\{a, b, c\}$ "

$$\Sigma^* = \{\epsilon\} \cup \text{closure of } \Sigma \text{ under } \cdot.$$

Kleene star

$$\Sigma = \{a, b, c\}$$

FA for Σ^*



Closure of Σ under \cdot

