

3.

Chapter 1

Regular Languages

From Chapter 0 :

$$\Sigma = \{a, b\}$$

Alphabet

abba

string

{a, aa, aaa, aba, aaaa,

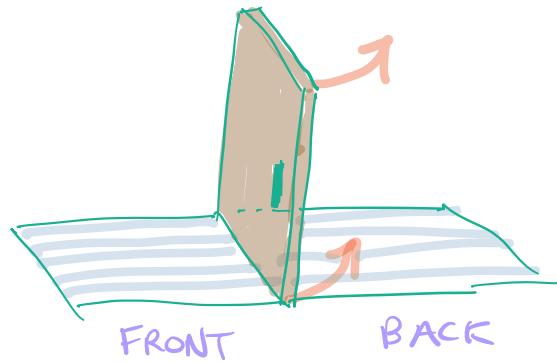
aaba, abaa, abba, aaaaa,

... }

Language

Defn: A language over alphabet Σ is
a set of strings over Σ .

Finite Automata FA



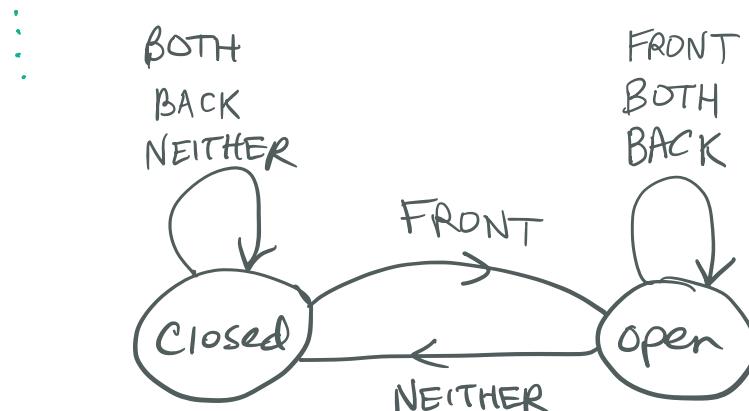
What behavior do we want from an automatic door?

-if FRONT is occupied ("FRONT")

then swing open ...

unless BACK is also occupied.

... and assuming door is closed.



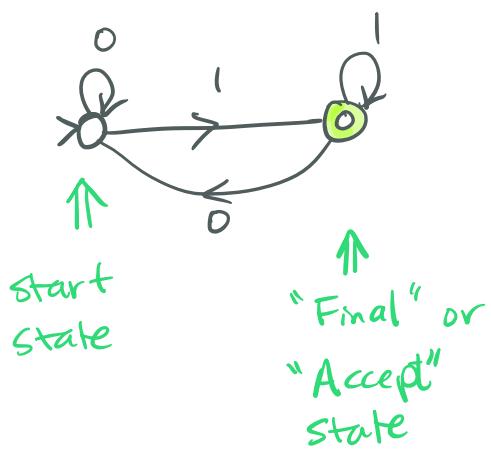
Transition Table for automatic door controller:

input from the mats

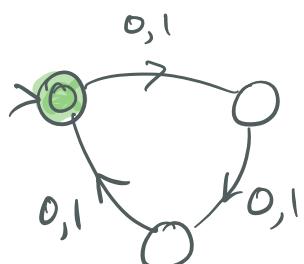
	NEITHER	FRONT	REAR	BOTH
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

State of the door

More examples of FAs:



what kind of strings
 ← can drive the FA
 from the start state
 to end at a final
 state



← string 010 is accepted
 string 0101 is not...
 it is rejected.

Defⁿ: A finite automaton is a 5-tuple

$(Q, \Sigma, \delta, q_0, F)$ where:

Q is a finite set of states

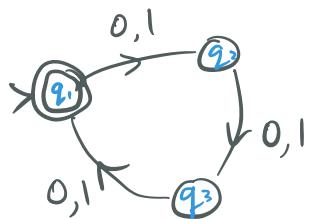
Σ is an alphabet

$\delta: Q \times \Sigma \rightarrow Q$ is a transition function

$q_0 \in Q$ is the start state

$F \subseteq Q$ is the set of accept states

Eg:



M

$$M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_1, q_3\})$$

where δ is given by

	0	1
q_1	q_2	q_2
q_2	q_3	q_3
q_3	q_1	q_1

Defⁿ: A finite automaton is a 5-tuple

$(Q, \Sigma, \delta, q_0, F)$ where:

Q is a finite set of states

Σ is an alphabet

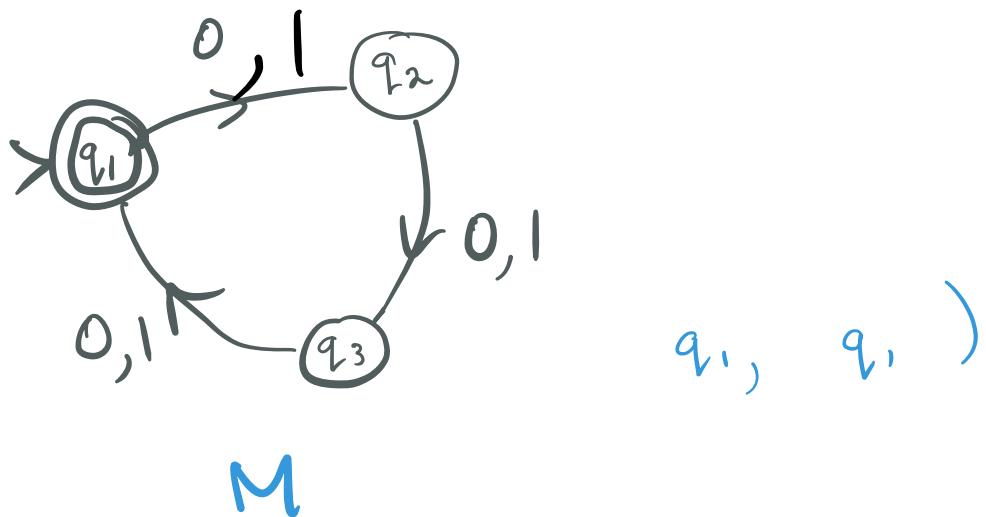
$\delta: Q \times \Sigma \rightarrow Q$ is a transition function

$q_0 \in Q$ is the start state

$F \subseteq Q$ is the set of accept states

Eg:

$$M = (Q, \Sigma, \delta, q_0, F)$$



Defⁿ: For a FA M whose alphabet is Σ

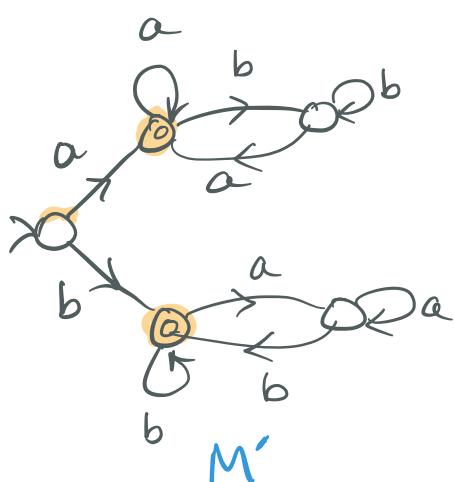
$L(M) = \{ w \mid w \text{ is a string over } \Sigma \text{ and } M \text{ accepts } w \}$.

We say $L(M)$ is the language recognized by (accepted by) M

Defⁿ: FA M (over alphabet Σ)

accepts a string w if
 w "drives" M from start state to a
final state.

E.g.



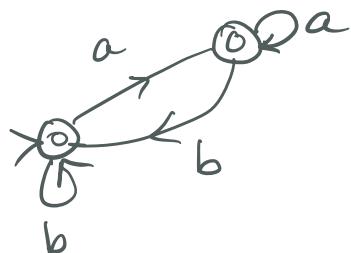
Some strings accepted by M:

a, aa, abbaba, ...

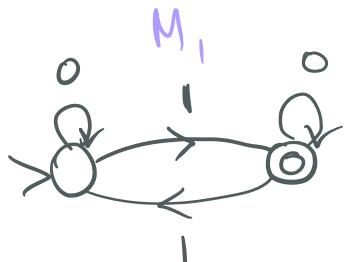
b, bab, bb, babbab, ...

M' recognizes the language of strings over $\{a, b\}$ that start and end in same letter.

Does this FA also recognize the language of strings over $\{a, b\}$ that start and end in same letter?

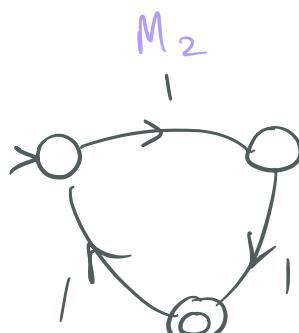


Other examples :



$$\Sigma = \{0, 1\}$$

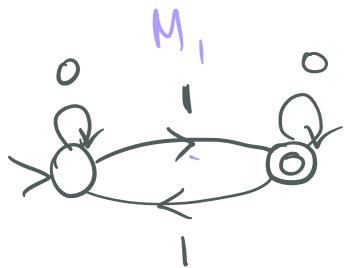
$$L(M_1) =$$



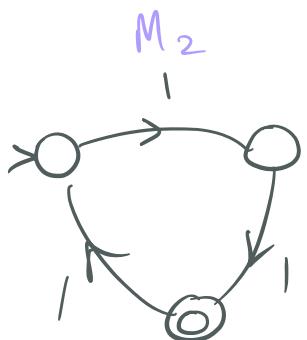
$$\Sigma = \{1\}$$

$$L(M_2) =$$

Other examples :



$$\Sigma = \{0, 1\} \quad L(M_1) = \{ \quad \}$$

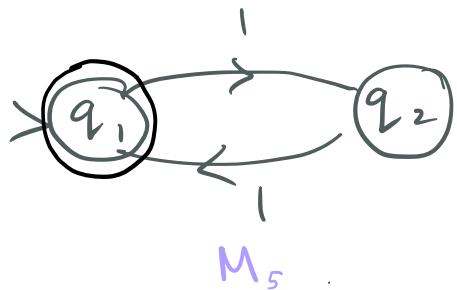


$$L(M_2) = \{ \quad \}$$

$$\Sigma = \{1\}$$

The "meaning" of a FA is the language it recognizes.

The "meaning" of a state can be regarded as the set of strings that can "drive" the FA from the start to that state.



$L(M_5, q_1) =$ // language of strings that can drive // M from start to q_1

is:

1. $\epsilon \in L(q_1)$
2. if $s \in L(q_1)$, then so is $s11$
Nothing else is in $L(q_1)$.

$$L(M_5) = L(M_5, q_1)$$

In a way, a FA language is a recursively defined object:

$L(M_5)$ is L_{q_1} where

$L(M_5, q_1)$ is 1. ϵ
2. $w1$ where $w \in L(M_5, q_2)$.

$L(M_5, q_2)$ is 1. $w1$ where $w \in L(M_5, q_1)$

Claim: $L(M_5, q_1)$ is $\{w : w \text{ is an even length string of 1's}\}$.

$L(M_5)$ is L_{q_2} where

$L(M_5, q_1)$ is 1. ϵ

2. $w.1$ where $w \in L(M_5, q_1)$.

$L(M_5, q_2)$ is 1. $w.1$ where $w \in L(M_5, q_1)$

Claim: $L(M_5, q_1)$ is $\{w : w \text{ is an even length string of 1's}\}$.

Need a stronger claim.

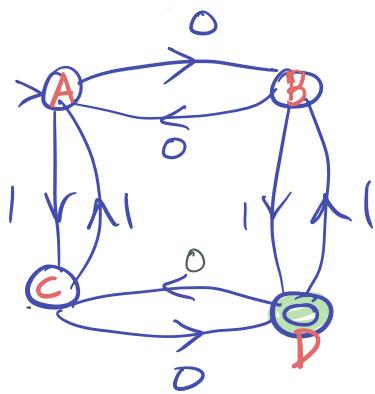
Claim: For any string w of 1's

$(q_1, w) \xrightarrow{*} (q_1, \epsilon)$ if $|w|$ is even

and $(q_1, w) \xrightarrow{*} (q_2, \epsilon)$ if $|w|$ is odd.

"yields, in 0 or more transition steps"

(More on this later.)



What Language is
recognized by this FA?

The Regular Operations on Languages

Defⁿ: Let A and B be languages.

Define the following operations:

Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Concat $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$

Star $A^* = \{x_1 x_2 \dots x_k \mid k \geq 0 \text{ and } x_i \in A \text{ for all } i\}$

E.g. $A = \{ab, aa\}$ $B = \{bb\}$

$A \cup B = \{ab, aa, bb\} = \{bb, aa, ab\}$

$A \circ B = \{abbb, aabb\}$.

$$A^* = \{ \epsilon, aa, ab, aaaa, aaab, abaa, abab, \dots \}$$

$$B^* = \{ \epsilon, bb, bbbb, \dots \}$$

↑
note shortlex order

Defn A set A is closed under binary opⁿ

"■" if $w_1 \blacksquare w_2 \in A$ whenever

$w_1 \in A$ and

$w_2 \in A$

Quiz: $\mathbb{N} = \{ 1, 2, 3, \dots \}$

$\mathbb{W} = \{ 0, 1, 2, \dots \}$

$\mathbb{Z} = \{ \dots -2, -1, 0, 1, 2, \dots \}$

\mathbb{N} closed under $+$?

\mathbb{N} closed under $-$?

\mathbb{W} closed under \times (mult) ?

\mathbb{W} closed under \div ?

W closed under - (minus)

W closed under negation?

Defn: A set is closed under unary op " Δ "
if $\Delta w \in A$ whenever $w \in A$.