

2. Review Week 1

Jan 6 2026

From chapter 0...

Sets are like this : $\{a, b\}$

curly bracket

↑ does not imply
an order

If there is an (implied) "universe" U ,
or ground set from which the set is
drawn, then set complementation is defined

$$\bar{S} = U \setminus S \quad \text{"S complement"}$$

↑ ↑
 "set-minus"
 all elements
 not in S

We also have \cap, \cup

Sequences and tuples - order is implied
- use ()

↑ ↑
 "open paren" "close paren"

(Note : graph theory, undirected graphs, abuse
this notation somewhat, using (u, v) for an

undirected edge.)

Review:- Functions + relations
- Graphs.

STRINGS & LANGUAGES

Defn An alphabet is a finite, non-empty set.

Its members are called symbols (or letters).

Σ "capital sigma" } often used to
 Γ "capital gamma" } denote alphabets
(α may denote an arbitrary symbol in the alphabet)

Defn A string over an alphabet Σ is a finite sequence of symbols from Σ , duplicates allowed.

ϵ ("epsilon") is the symbol for the empty string.

$$\begin{aligned} ab \cdot bb &= abbb \\ S_1 \cdot S_2 &= S_1 S_2 \end{aligned}$$

Juxtaposing two strings is an operation called "Concatenation", yielding a new string. Also use •

Recursive Definitions.

Alternative definition of strings over $\{a, b\}$.

Defn :

1. ϵ is a string over $\{a, b\}$
2. if s is a string over $\{a, b\}$,
 so is $s \cdot a$
3. if s is a string over $\{a, b\}$,
 so is $s \cdot b$
4. Nothing else is a string over $\{a, b\}$

The above is a recursive definition of strings (over the given alphabet).

Once we have a recursive definition of an object, we can easily define functions of that object.

Defⁿ length of a string over $\{a, b\}$,
denoted with abs-value $|s|$

$$1. |\epsilon| = 0$$

$$2. |s \cdot a| = |s| + 1, \text{ where } s \text{ is a string over } \{a, b\}$$

$$3. |s \cdot b| = |s| + 1 \quad " \quad " \quad "$$

Length is now defined for all strings over $\{a, b\}$, since (4) "Nothing else is a string over $\{a, b\}$ "

Defⁿ "string over Σ ".

1. ϵ is a string over Σ

2. if s is a string over Σ , and $\alpha \in \Sigma$
then $s \cdot \alpha$ is a string over Σ .

3. Nothing else is a string over Σ .

For you to do:

1. Give a definition of string length for strings over Σ .

2. We want $\#_a(s)$ defined on strings over $\{a,b\}$ to be the number of a's in s .

Make it so, using the recursive definition.

3. Do same for $\#_\alpha(s)$ for strings over Σ , $\alpha \in \Sigma$.

4. Prove using induction and the defn of string length $|w|$ that $|w_1 \cdot w_2| = |w_1| + |w_2|$ $\forall w_1, w_2$ over Σ

