
Computer Science 260 Midterm 3: Hashing, Divide and Conquer, Dynamic Program-
ming, AVL trees
Out of 56 possible marks NAME:

1. (6 marks) Circle either T (True) or F (False), whichever is a more accurate assessment of the
following statements:

T F A hash function is always computed “mod m”, where m is the total number of keys to be stored.
T F To rebalance and AVL tree after an insertion, rotations are performed at the location of the lowest
node that is out of balance.
T F The minimum key value in a hash table can be found in O(logn) time.

2. (4 marks) Here is an 8x8 grid, with a square missing. Herringbone tile the rest of the grid.
(Herringbone tiles look like this:). Use Divide-and-Conquer to find the tiling. Mark a tile

spanning three squares like this:

✷

3. (8 marks) Dance Contest! The annual Dance Contest has published the details, and you know
exactly how many points you will gain for each of these dances, if you dance it. Some dances tire
you out, and you have to “skip” a few of the following dances. Below is presented, for each dance
in the order they will be executed, the points you would gain if you danced it, and the “offset”
to the next dance you can dance without being exhausted. In other words, if the Offset is 1 for
dance number 8, then the next dance you can dance is 8+1=9; so that dance does not tire you out
at all, you are ready for the next one! Offsets must be at least 1. Give the optimal set of dances,
and the total number of points.

Dance 1 2 3 4 5 6 7

Points 5 10 14 3 6 7 11

Offset 2 2 4 4 2 3 1

4. (8 marks) Use Dynamic Programming to find the longest common subsequence (not necessarily
contiguous) in the following two strings, by filling the table below.

λ A C C B B A C D

λ

C

A

C

B

B

C

D

A

5. (8 marks) Perform the AVL inserts of 20, 10, 5, 15, 25, 17, 12, 7, 13, 4, 3 into an originally empty
AVL Tree. Do them in that order; show the tree that results. You do not need to redraw the tree
as it grows, UNLESS it needs rebalancing – you must redraw it after each rebalancing.

6. Consider the hash function h(c1c2 . . . cn) = (Σn

i=1
ord(ci))mod m. Note that ord(ci) is the ordinal

number of the letter ci in the alphabet. The ordinal values are provided here for your convenience:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(a) (6 marks) Insert the following keys into the hash table below, using open addressing (all
elements are stored in the table itself) with double hashing to handle collisions. The secondary
hash function is “string length + number of vowels” mod m. For example, the secondary
hash of EE is 4.

AN MB HB CD EE LN GI UF

(b) (8 marks) Write an Insert(string key) algorithm, in pseudocode, for the above table, called T .
For simplicity, let T be a table of keys only, and T [i] == EMPTY and T [i] == DELETED

are the accepted usage for detecting if a slot i has never been written to, or the element there
has been deleted, respectively.

You can assume that the primary hash function h(string k) is provided; also provided is a
function h2(string k) that computes “string length + number of vowels (mod 11)” – i.e.,
you don’t have to write the code for these, you can just call these functions.

7. (8 marks) Give a simple, efficient, recursive, Dynamic Programming algorithm to perform expo-
nentiation. The input is a Hint: a

n = a ∗ a
n

2 ∗ a
n

2 , if n is odd, and a
n = a

n

2 ∗ a
n

2 , if n is even.
Integer division, rounding down, is used in the exponents.

Another hint about efficiency: not all the entries in aTo[] need to be computed – not all are used
for a particular value of n. You can use a ”just in time” computation strategy – compute it only if
it is needed and it is not yet computed (you can test if it has already been computed by checking
if it’s value is not 0).

Assume that a global variable "double aTo[1..n]", an array of floating point numbers,

is declared and initialized to zeroes.

Algorithm Expon(a, n)

input: a is a floating point number, n is a positive integer

output: a^n

