Computer Science 260 Crib Sheet 2022

Big Oh Rules (Facts) for positive-valued functions:

1. Removal of Constant Factors Rule: $f(n) \in \mathbf{O}(c \cdot f(n))$ for all constants $c>0$.
2. Transitivity of Big O: $f(n) \in \mathbf{O}(g(n))$ and $g(n) \in \mathbf{O}(h(n)) \Rightarrow f(n) \in \mathbf{O}(h(n))$.
3. Strange But True Log Domination Rule: $(\log n)^{r} \in \mathbf{O}\left(n^{s}\right)$ for all constants r, for all $s>0$.
4. Polynomial Rule: $p(n) \in \mathbf{O}(q(n))$, whenever $p(n)$ is a polynomial in n, of degree k, and $q(n)$ is a polynomial in n, of degree t, where k and t are constants and $k \leq t$. The highest degree term in $q(n)$ must be a positive term.
5. Product Rule: $f_{1}(n) \in \mathbf{O}\left(g_{1}(n)\right)$ and $f_{2}(n) \in \mathbf{O}\left(g_{2}(n)\right) \Rightarrow f_{1}(n) \cdot f_{2}(n) \in \mathbf{O}\left(g_{1}(n) \cdot g_{2}(n)\right)$.
6. Log Base is Irrelevant Rule: $\log _{a} n \in \mathbf{O}\left(\log _{b} n\right)$ for all constants $a>1, b>1$.
7. Reciprocal Rule: $f(n) \in \mathbf{O}(g(n)) \Rightarrow \frac{1}{g(n)} \in \mathbf{O}\left(\frac{1}{f(n)}\right)$.
8. Sum Rule: If $f_{1}(n) \in \mathbf{O}(g(n))$ and $f_{2}(n) \in \mathbf{O}(g(n))$ then $f_{1}(n)+f_{2}(n) \in \mathbf{O}(g(n))$.
9. Less-Than Rule: if $f(n) \leq g(n)$ for all n greater than some $n_{0}>0$ then $f(n) \in \mathbf{O}(g(n))$. Use this rule only when a) the \leq relation is obviously true, and b) there is NO OTHER WAY TO PROVE IT JUST USING THE RULES.

When using the Rules to prove a Big Oh statement, be sure to refer to the Rule explicitly by name, and number the lines of your proof; and if a statement follows logically from other statements and a rule, refer to the statements by number and the rule by name.

Definition of Big Oh: If $\exists c>0, n_{0}>0$ such that $f(n) \leq c * g(n) \forall n \geq n_{0}$, then $f(n) \in \mathbf{O}(g(n))$.
Definition of Ω : If $\exists c>0, n_{0}>0$ such that $f(n) \geq c * g(n) \quad \forall n \geq n_{0}$, then $f(n) \in \Omega(g(n))$. (Alternatively: if $f(n) \in \mathbf{O}(g(n))$, then $g(n) \in \Omega(f(n))$.)

Definition of Θ : If $f(n) \in \mathbf{O}(g(n))$ and $f(n) \in \Omega(g(n))$, then $f(n) \in \Theta(g(n))$.

Master Theorem

For a function $T(n)$ defined on positive integers, where $T(n)=a T\left(\frac{n}{b}\right)+f(n)$ and $f(n)$ is a positivevalued function, and constants a and b are such that $a \geq 1$ and $b>1$, then:

1. If $f(n) \in \mathbf{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n) \in \Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n) \in \Theta\left(n^{\log _{b} a}\right)$ then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log n\right)$
3. 3. If $f(n) \in \Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and there exists some $c, 0<c<1$ such that $a f\left(\frac{n}{b}\right)<c f(n)$ when n is sufficiently large, then $T(n) \in \Theta(f(n))$.

Log facts

1. $\lg n \leq n \forall n \geq 1$, and $\log n \leq n \forall n \geq 1$.
2. $\log _{a}^{d} n$ is, by definition, $\left(\log _{a} n\right)^{d}$
3. $2^{\lg n}=n$
4. $\log _{a} n^{b}=b \log _{a} n$
5. $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$
6. $\log _{b} a=\frac{1}{\log _{a} b}$
7. $a^{\log _{b} c}=c^{\log _{b} a}$
8. $\log _{c}(a * b)=\log _{c} a+\log _{c} b$
9. $\log _{4} 5=1.161$
10. $\log _{5} 4=0.861$
11. $\log _{5} 3=0.683$
12. $\log _{3} 5=1.465 \log _{4} 3=0.792$
13. $\log _{3} 4=1.262$
