SCI 2602022 Assignment 1
Analysis of Algorithms, Master Theorem, Big-O Submission Deadline: midnight, Saturday Oct 1, 2022. Out of 38 marks

Handwritten is accepted in the original, not scanned. Electronically generated documents can be handed in electronically to gara.pruesse [at] viu.ca. 10% penalty for work submitted by Sunday at noon. 50% penalty for work submitted by Monday at noon. 100% penalty thereafter.

1. (1 marks) Explain briefly why the statement, "The running time of Algorithm A is at least $\mathbf{O}\left(n^{2}\right) "$ is meaningless.
It's like saying "the running time is something more than something less than $n^{2 \prime}$. Meaningless.
2. (4 marks) Prove the "Reciprocal Rule": $f(n) \in \mathbf{O} g(n) \Rightarrow \frac{1}{g(n)} \in \mathbf{O}\left(\frac{1}{f(n)}\right)$.

Suppose $f(n) \in O(g(n))$. Then $\exists c_{1}, n$, positive constants such that

$$
\begin{aligned}
& \text { at } f(n) \leq c_{1} \circ g(n) \forall n \geqslant n_{1} \\
& \Rightarrow \frac{1}{c_{1} \circ g(n)} \leq \frac{1}{f(n)} \forall n \geqslant n_{1} \\
& \Rightarrow \frac{1}{g(n)} \leq c_{1} \cdot \frac{1}{f(n)} \forall n \geqslant n_{1}
\end{aligned}
$$

Ot same ${ }^{0} C_{1}, n$, are also witnesses to the fact that

$$
\frac{1}{g(n)} \in O\left(\frac{1}{f(n)}\right)
$$

3. (4 marks) Show that $3 n^{2}+4 n-\frac{\log n}{\log \log n} \in \mathbf{O}\left(n^{2}\right)$ using the Definition of Big-O.

$$
\begin{aligned}
3 n^{2}+4 n-\frac{\log n}{\log \log n} & \leq 3 n^{2}+4 n \quad \forall n \geqslant 11 \begin{array}{l}
\text { since in this } \\
\text { range, } \frac{\log n}{13 \log n} \geqslant 0 \\
\end{array} \\
& \leq 3 n^{2}+4 n^{2} \quad \forall n \geqslant 11 \\
& \leq 7 n^{2} \quad \forall n \geqslant 11
\end{aligned}
$$

$$
\begin{aligned}
& C=7, n_{0}=10 \text { witness that } \\
& 3 n^{2}+4 n-\frac{\log n}{\log \log n} \in O\left(n^{2}\right)
\end{aligned}
$$

4. (4 marks) Prove that $6 n \lg n+4 n^{3}-8 n \in \Theta\left(n^{3}\right)$. You can use the Rules or the definition of Big Oh.
A. 1. $\lg n \in O(n)$ - less-than rule, $n=2$
5. $6 n \in O\left(n^{2}\right)$ - Polynomial Rule
6. Go $\lg n \in O\left(n^{3}\right)$ - 1,2 Product Rule
B.
7. $n^{3} \in O\left(4 n^{3}-8 n\right)$ Polynomial Rule
8. $4 n^{3}-8 n \in O\left(6 n 1 y n+4 n^{3}-8 n\right) \begin{aligned} & \text { Less than } \\ & \text { Rule }\end{aligned}$
9. $n^{3} \in O\left(6 n \lg n+4 n^{3}-8 n\right) 1,2$ Trans 8 int.
10. $4 n^{3}-8 n \in O\left(n^{3}\right)$-Polynomial Rule 5. $6 n \lg n+4 n^{3}-8 n \in O\left(n^{3}\right)$
$-3,4$ Sum Rule.
Since $n^{3} \in O\left(6 n \lg n+4 n^{3}-8\right)$, then $6 n \lg n+4 n^{3}-8 n \in \Omega\left(n^{3}\right)$
And from Part A, we know

$$
\begin{array}{r}
6 n \lg n+4 n^{3}-8 n \in O\left(n^{3}\right) \\
\therefore 6 n \lg n+4 n^{3}-8 n \in \theta\left(n^{3}\right)
\end{array}
$$

5. (6 marks) Is $\frac{n}{\log n} \in \mathbf{O}(n)$? In $\Omega(n)$? In $\Theta(n)$? Answer Yes or No to each, and prove your answers using the Facts or the definitions of $\operatorname{Big} \mathrm{Oh}, \Omega$, and Θ.
We show $\frac{n}{\log n} \in O(n)$, and $\frac{n}{\log n} \notin \Omega(n)$, hence by definition $\frac{n}{\log _{n}} \notin \theta(n)$.
I.1. $\mid \in O(\log n)$ by Less Than Rule
6. $\frac{1}{\log n} \in O(1)$

1, Recip. Rule
3. $n \in O(n)$ Constant Factors
4. $\frac{n}{\log n} \in O(n) \quad 2,3$ Product Rule.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { II. Suppose } \frac{n}{\log } \in \Omega(n) \\
\therefore n \in O\left(\frac{10}{n}\right)
\end{array}\right. \\
& \therefore n \in O\left(\frac{n}{10}\right) \text {. } \\
& \operatorname{o}_{0} \quad \exists c, n_{0} \text { set. } n \leq c \cdot \frac{n}{\log n} \forall n \geqslant n_{0}
\end{aligned}
$$

$\Rightarrow \Leftarrow$ $\therefore \frac{n}{\log n} \notin \Omega(n)$.
6. (4 marks) List the following functions in a column so that the function at the top grows the slowest, and the function at the bottom grows the fastest. If two

$$
n+10 \sqrt{n}
$$

$10 n \lg \lg n$ $n^{2} \lg n$
$(2.3)^{n} n^{2}$
n !

$$
n^{n}, 2^{n \lg n}<2^{n \lg n}=\left(2^{\lg n}\right)^{n}=n^{n}
$$

7. Briefly describe what happens to the running time of an algorithm with run time $f(n)$ when the size of the input is increased by one, and when the size of the input doubles:
(a) (2 marks) $f(n)=n$
+1 : Running increases by a constant amount, regardless of n
$\times 2$: doubles
(b) (2 marks) $f(n)=n^{2}$
+1 : increase by an amount that is approximately linear in n
$\times 2$: quadruples
(c) (2 marks) $f(n)=2^{n}$
+1: doubles
x2: squares.
8. Solve the following Divide-and-Conquer recurrences using the Master Theorem.
(a) (3 marks) $T(n)=\underline{3 T(n / 4)+n} \quad h^{\log _{b} a}=n^{\log _{4} 3} \approx n^{0.8}$

$$
n \in \Omega\left(n^{0.8+\varepsilon}\right)
$$

regularity check:

$$
3\left(\frac{n}{4}\right)<c n \quad \text { when } c=.76<1 \text {. }
$$

$\therefore T(n) \in \theta(n)$, by case 3 of $M T$.
(b) (3 marks) $T(n)=4 T(n / 2)+\underbrace{n^{2}}_{f(n)} \quad n^{\log _{b} a}=n^{\log _{2} 4}=n^{2}$

$$
\begin{aligned}
& f(n)=n^{2} \in \Theta\left(n^{\log _{4} 2}\right) \\
& \therefore \quad T(n) \in \theta\left(n^{2} \lg n\right)
\end{aligned}
$$

$$
\text { (c) }\left(3 \text { marks) } T(n)=6 T(n / 3)+n \log n \quad n^{\log _{b} a}=n^{\log _{3} 6} \approx n^{1.65}\right.
$$

$n \log n \in O\left(n^{\log _{3} 6-\varepsilon}\right)$

$$
e^{\circ} T(n) \in \theta\left(n^{4} \log , 6\right)
$$

