Big Oh

- running time is measured as a function of the size of the data on which it runs. - could be size of input - could be size of collected data e.g. database stored in a tree. - We are interested in Upper Bounds like, "We can prove running time grows no more than quadratically with growth in input size eg 1000 entries token 1 sec 2000 entries takes 4

2000 entries takes T set (that is <u>consistent</u> with O(n2)) but it is not proof . n2

"Straight line code" ey x = x + i; y = x + 2; Z[6] = x + y; Z[6] = x + y; $x = x^{5};$ y = 188x; Z[6] = x + y;We regard these code hegments as being Constant time, though they may have very different constants... Hence Straight-line code is treated as if it is constant time unless you use fancy containers eg heap or deque

Loops
A loop takes running time that is the
sum of the running time of all its iterations.
for
$$(mt i=0; i
 $arr \exists = i + i;$
 g
 $O(n)$
for $(int i=0; i
 $o(n)$
for $(int i=0; i
 $arr \exists \exists = i + i;$
 g
 $O(n)$
 $for (int i=n; i>0; i-1) \ge$
 $i = i/2;$
 g
 $= O(iog n)$$$$$

$$\mathbb{B}(\underline{g} = \underline{o})$$

$$Deft: for positive-valued functions f(n), g(n)$$

$$f(n) \in O(g(n)) \iff \exists^{k} \text{ constant } c > 0$$

$$and \exists \text{ constant } n_{o} \ge 1$$

$$such that$$

$$f(n) \le c \cdot g(n) \forall n \ge n_{o}$$

$$for example...$$

$$For example...$$

$$For example...$$

$$for all^{e}$$

$$Claim: 5n \le O(n)$$

$$g(n)$$

$$Proof: 5n \le 5n, \forall n \ge 1$$

$$o_{o} c = 5 \text{ ond } n_{o} = 1$$

$$demonstrate the inequality$$

$$II$$

Indeed, Rule#1: "Removal of Constant factors" $C \cdot f(n) \in O(f(n))$ $\forall pos f(n)$ and c > 0Proof: $f(n) \leq f(n) \forall n \ge 1$ $\Rightarrow c f(n) \leq c = c$ and $n \ge 1$ demonstrates the required negrality. The

1001 $n^2 \in O(n^2)$ $(n \log n)/40 \in O(n \log n)$ etc. $\hat{\Pi}$ If you are "allowed" to use the <u>Rules</u> you can just state these claims, as follows: $3n^2 \in O(n^2)$ by Removal of Constant Factors (or "Constant Factors Rule") Note that $\forall c_{1,j} c_2$ both $\neq 0$, $c_1, F(n) \in O(c_2, F(n))$ and $c_2, f(n) \in O(c_1, f(n))$ Note $\lfloor n \rfloor \in O(n)$ and $\lceil n \rceil \in O(n)$. What you will be asked to do:

1. Prove $5n^2 \in O(n^3)$, using the definition Claim: $5n^2 \in O(n^3)$ Proof: $5n^2 \leq n \cdot n^2$ $\forall n \geq 5$ $\leq n^3$ $\forall n \geq 5$ δ_0° using c = 1, $n_0 = 5$, we demonstrate the inequality.

of tion.

2. Is
$$n^3 \in O(5n^2)$$
? By Wald, a
Ans: No. Suppose (BWOC) it were...
ie suppose $\exists c > 0$, $n \ge 1$ such that
 $n^3 \le c \cdot 5n^2$ $\forall n \ge n$.
 $n \le 5c$ $\forall n \ge n$.

But
$$n > max (n_0, 5c)$$
 contradicts this
 $\rightarrow \leftarrow$.
 $\partial_0 n^3 \notin O(5n^2)$.
Similarly, nlgn $\notin O(n)$.
 $n^3 \notin O(n^2)$
 $n^4 \notin O(n^3)$

3. Show $3n^2 - 2n + 6 \in O(n^2)$ Proof: $3n^2 - 2n + 6 \leq 3n^2 + 6 \quad \forall n \geq 1$ $\leq 3n^2 + 6n^2$ $\forall n \geq 1$ $\leq 9n^2 \forall n \geq 1$ $0 = 3n^2 - 2n + b \in O(n^2)$ as demonstrated by c=9, $n_o=1$, \square That's how you use the definition to prove BigO. 4. Show $2nlgn \in O(n^2)$ using def. Proof: 2n Ign < 2n² ∀n >

 c° an lyn $\in O(n^2)$ as demonstrated by C = 2 and $n_0 =$

Reminder: if $x \leq y$ and both are positive then $x \cdot F(n) \leq y \cdot F(n) \forall positive-valued$ f

Aside:
$$f(n) \in O(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} \le$$

for pos-valued functions $f(n), g(n)$.

You should now be able to do the
Self-test (HW) on the Week-by-Week
AND...
I. Using only the definition of Biz-O and
"Ign < n
$$\forall n > 0$$
", show that
 $lg^2 n \in O(n^2)$

Recall logba means (logba)^c

Log facts that will be useful:

$$lg n = log_2 n$$

$$lg n \leq n \forall n > 0$$

$$lg_b^c a = (lg_b a)^c$$

$$2^{lg n} = n , \quad lg(2^n) = n .$$

$$log_a n^b means \ log_a(n^b)$$

$$log_a n^b = b \log_a n$$

$$log_b a = \frac{log_c a}{log_c b}$$

$$log_b a = \frac{l}{log_a b}$$

$$a^{log_b c} = c^{log_b a}$$

$$log_c(a \times b) = log_c a + log_c b$$

$$log_{4}5 = |.16|$$

 $log_{5}4 = 0.86|$
 $log_{4}3 = 0.792$
 $log_{3}4 = 1.262$