Graphs, continued.

Recall: A graph can be represented by a Adjacency Matrix

(5)

appropriate value for the diagonal may be application specific.

Pro: Fast look-up for "Is 3 adjacent to 4?"
Con:- $\theta\left(n^{2}\right)$ space even if m is $\theta(n)$
$-\theta(n)$ to process all neighbours of a vertex v even if r has no neighbours

Adjacency List Representation.

Add an edge $(4,5)$:

- insert 5 into (head of) 4's list
- insert 4 into (head of) 5's list

Definition: The degree of a vertex is the number of edges incident with the vertex eg. vertex 1 has degree 2.

Also, u is adjacent to vertex v if $(u, v) \in E$.

Important Application: Bacon number.

Bacon number: length of shortest path to Kevin Bacon in the "worked with" graph.
path length $=$ \# edges
Note that a vertex can have extra info stored "at" the node.
Also, an edge may have data associated with it.

Blazingly Fast Graph Algs $O(n+m)$
Graph Search (G, v)
Input: An undirected or directed graph $G=(V, E)$ and a start vertex $s \in V$

Goal: Identify the vertices of G reachable from S.
"reachable" means \exists a path from

Generic Search
Input: Graph $G=(V, E)$, vertex $s \in V$
postcondition: vertex $u \in V$ is reachable from 5 iff marked $[u]=$ true
$\operatorname{marked}[s]=$ the
while \exists an edge (v, ω) with I/ underdeternined $\operatorname{manked}[v]==$ true and $\operatorname{marked}[\omega]==$ false,

- Choose such an edge (v,w)
$-\operatorname{manked}[\omega]=$ true.

Claim: (Correctness of Generic Search)
At the conclusion of Generic Search, a vertex v has marked $[v]=$ the iff \exists an $s-v$ path in G.

Proof: We will assume G is undirected, but this proof can be adapted to the directed case.
$I_{1}(\Rightarrow)$ BWOC. Suppose Generic Search is run, and let u be the first vertex that is not reachable from s to be marked. Then \exists an edge (ω, u) where ω was already marked by this time. $\because W$ is reachable from s, ie \exists path

$$
S, v_{1}, v_{2}, \ldots, w .
$$

But then $s, v_{1}, v_{2}, \ldots, w, u$ is also a path in G.
Then u is reachable form s in G

$$
\Rightarrow \Leftarrow
$$

\therefore if u is marked, then u is reachable.
II (\Leftarrow) By induction on the distance of a vertex from.
distance $=0: S$ is marked in first step.
$\$$ the for dist $=i,>0$
Let u be a vertex at distance it 1

Then \exists edge (ω, u) where ω is at distance i.
Then ω is marked.
Then u will eventually be marked (algorithm cannot halt white \exists ar edge like ω).

Breadth First Search.
Input: graph $G=(V, E)$ as adj-list; vertex S. post condition: marked $[v]==$ true $\Leftrightarrow v$ is reachable from S.

1. $\operatorname{marked}[s]=$ true
2. $Q=$ queue data structure, initially containing just S
3. while Q is not empty do
4. remove vertex v from front of Q
5. for each edge (v, ω) in v 's adj-list do
6. If ! marked $[\omega]$
7. $\operatorname{marked}[\omega]=$ true
8. add ω to end of Q.

