Graphs
A graph is a set of vertices V and an edge set $E \subseteq V \times V$.
(Undirected) graph $G=(V, E)$

$$
\begin{aligned}
&\{1,2\} \times\{a, b\} \\
&=\{(1, a),(2, a), \\
&(1, b),(2, b)\} \\
&\{1,2\} \times\{1,2\} \\
&=\{(1,2),(1,1), \\
&(2,1),(2,2)\}
\end{aligned}
$$

path a, b, c, g

$$
\begin{aligned}
V= & \{a, b, c, d, e, f, g, h\}- \\
E= & \{(b, b),(a, e),(b, c),(d, c)(e, d), \\
& (c, g),(f, g),(g, h),(a, c)\}
\end{aligned}
$$

Sequence $v_{1}, v_{2}, \ldots v_{k}$
pairs, but if graph
Path where $\left(v_{i}, v_{i+1}\right) \in E$ and is undirected, Path, simplecycle, each it same as (h, g) vertex
appears appears no more than once. length of path or cycle $=$
cycle $=v_{1} v_{2} \cdots v_{k}$ where $v_{1}=v_{K}$ and \nexists any
Deft: A graph is connected (other) repeated vertices

Deft: A graph is connected if $\forall u, v \in V$ \exists a u-v path in G.

Defy: $u-v$ path is a path from u to r in G.
Deft: A connected component of a graph G maximal is a subgraph of G that is connected.

Deft: A subgraph of $G=(V, E)$ is a graph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ such that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. (also, $E^{\prime} \subseteq V^{\prime} \times V^{\prime}$)

Deft: An induced subgraph $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ of $G=(V, E)$ has $V^{\prime \prime} \subseteq V$, and $E^{\prime \prime}=E \cap\left(V^{\prime \prime} \times V^{\prime}\right)$

Deft A tree is an acyclic connected graph.
How many edges are in a tree?

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Graph Representation.

	1	2	3	4
1	0	1	0	0
2	1	0	1	1
3	0	1	0	1
4	0	1	1	0

Adjacency Matrix representation.

$$
\text { space }=\theta\left(n^{2}\right) \text {. }
$$

How to determine if a graph is connected

Depth-First Search
Want to visit all nodes in the graph. (Suppose they contain data, and you want to print that out)

Search_G_by_dfs (G)
for $i=1 \ldots n \quad \operatorname{marked}[i]=$ false
for $i=1 \ldots n$
if $\operatorname{marked}[i]=$ false

$$
\begin{aligned}
& \qquad \operatorname{dfs}(G, i) \\
& d f s(G, i) \\
& \text { visit(} i) \\
& \operatorname{marked}[i]=\text { true }
\end{aligned}
$$

for each j where $(i, j) \in E$ $\operatorname{dfs}(j)$

BFS

Breadth-First Search.

