Note about Master Theorem...
Even our advanced Master Theorem does not have all the answers for all Divide Conquer recurrence relations.

$$
\text { Consider } \begin{aligned}
& T(n)= 2 T(n / 2)+\underbrace{n \lg n}_{f(n)} \quad \log _{2} 2=1 \\
& n \lg n \stackrel{\epsilon}{ } \quad O\left(n^{1-\varepsilon}\right) \\
& O(n) \\
& \Omega\left(n^{1+\varepsilon}\right)
\end{aligned}
$$

$n \lg n$ is not in any of these categories We can see that more clearly if we divide $n \lg n$ and whats in the $0, \theta, \Omega$ by n (yes, we can do that)

Then the question becomes: for position ε

$$
? O\left(n^{-\varepsilon}\right)
$$

$\lg n \in \Theta(1) \in\} \begin{aligned} & \text { we know } \lg n \\ & \text { is not in }\end{aligned}$ $\Omega\left(n^{\varepsilon}\right) \quad$ classes.
$n^{-\varepsilon}$ is actually a decreasing function whereas $\lg n$ is an increasing function, So clearly $\lg n \notin O\left(n^{-\varepsilon}\right)$ for any positive ε.

\therefore The master Theorem is SILENT on this recurrence.

That's the answer you give on a test or assignment.

