Note about Master Theorem ...

Even our advanced Master Theorem does not have all the answers for all Divide & Conquer recurrence relations.

Consider
$$T(n) = 2T(\frac{n}{2}) + n \lg n \log_2 2 = 1$$

 $O(n^{1-\epsilon})$
 $n \lg n \stackrel{?}{\in} \Theta(n)$
 $SZ(n^{1+\epsilon})$

n lg n is not in any of these categories We can see that more clearly if we divide n lg n and whats in The $0, \theta, 52$ by n (ges, we can do that)

Then the question becomes: for positive
$$\varepsilon$$

? $O(n^{-\varepsilon})$? We know Ign
Ign $\mathcal{E} \Theta(1)$? We know Ign
is not in these
 $SZ(n^{\varepsilon})$ classes.

 $N^{-\varepsilon}$ is actually a decreasing function, whereas Ign is an increasing function, So clearly Ign $\notin O(n^{-\varepsilon})$ for any positive ε .

The master Theorem is SILENT on this recurrence. That's the answer you give on a test or assignment.