Algorithm
An algorithm is a step-by-step method of solving a problem.

- Each step should be basic
- the procedure must terminate

Aside: Algs have much in common with proofs.

- each step of your proof should be easily seen to follow from axiors (theorems) and earlier statements you have already proved.

How do we come up with algorithms to solve problems?

- There are a handful of Algorithmic Paradigms that are good to know; the majority of algorithms use these approached in one form or another.

Egg. Problem "Sorting"
Input: An andy A of orderable items, like int Output: array A is now in non-decreasing order

6	14	3	20	19	17	5	16	23	1	8	13

Alg Approach \#1: "More of the input"

Insertion Sort

- pretend A ends at index $i=0$.
sort it. [Done!]
- If A is actually bigger (let $i=i+1$)
- know that A [0.. 请] is already sorted.
- swap element $A[i]$ leftwards until $A[0, i]$ is sorted.
- if $i=n$, Done!
else
Alg Approach "More of the out put"
Selection Sort
- "output" A ore element at a time. $i=0$
- what should be the first element $A[0]$?
-scan A[i..n-1], find smallest element.
-swap $A[i]$ with That smallest element.
-now A[0..i] is "the" A prefix you
will eventually output

$$
i=i+1
$$

if $i==n$... Done!
else

Analyze Insertion Sort
for $i=1 \ldots n-1$ do

$$
j=i-1
$$

while $j>=0$ and $A[j]<A[j+1]$

$$
\operatorname{Swap} A[j], A[j+1]
$$

$\left[\right.$ Recall : $\left.\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\right]$

$$
i=1 \cdot n-1
$$

Analyze Selection Sort
for $10 c=0 \ldots n-1$ do

$$
\begin{aligned}
& \min -i=10 c \\
& \text { for } i=\min -i+1 \ldots n-1 \text { do } \\
& \text { if } A[i]<A[10 c]
\end{aligned}
$$

swap $A[i], A[10 c]$

Worst case $O\left(\sum_{i=n-1}^{1} i\right)=O\left(n^{2}\right)$.

Algorithmic Approach. Divide \& conquer
MergeSort (A, i, j) // A is an array, i, j are indices in the range
if $\hat{j}>i$ $A[1 \ldots n]$.

$$
\text { mid }=\left\lfloor\frac{i+j}{2}\right\rfloor
$$

Merge $\operatorname{Sort}(A, i$, mid $)$
Merge Sort (A, mid $+1, j$)
$\operatorname{Merge}(A, i$, mid, $j)$
$\operatorname{Merge}(A, i, m, j)$

$$
k=1 ; \quad x=i ; \quad y=m+1 ;
$$

while $x \leq m$ and $y \leq j$
if $A[x] \leqslant A[y]$

$$
\begin{aligned}
B[k+ \pm] & =A[x+t] \\
\text { else } B[k+t] & =A[y+t]
\end{aligned} \quad B|1| 2|3| 4|5| 677
$$

if $x \leq m$ copy $A[x \ldots m]$ into $B[k, j] 89$ else if $y \leq m$ copy $A[y, \ldots]$ into $B[k \ldots j]$.
Copy $B[1 \ldots j-i+1]$ into $A[i \cdots j]$
Running time is proportional to the number of assignment op's; each element is assigned twice so it is $O(n)$

Analyze Merge Sort

1. Running time of Merge is $O(1)$ for every element in the array range (s). $O(n)$ for an n-element array.
2. Let time for MergeSort on n elements be $T(n)$

Then $T(n)=2 \cdot T\left(\frac{n}{2}\right)+n$

$$
\begin{aligned}
& \begin{aligned}
& \text { MergeSort }(n): \begin{array}{c}
\text { mergeSort }(n / 2)
\end{array} \quad \begin{array}{c}
\text { MargeSort }(n / 4) \\
\text { Marge Sort } \\
0(n / 2)
\end{array} \\
& \text { margeSort }(n / 2)<M s(n / 4)
\end{aligned} \\
& \text { mergeSort }(n / 2) \quad \begin{array}{c}
O(n / 2 \\
\mathrm{MS}(n / 4)
\end{array} \\
& +O(n) \text { Merge } \begin{array}{c}
\text { MS }(n / 4) \\
O(n / 2)
\end{array}
\end{aligned}
$$

The Master Theorem
For a function $T(n)$ defined on positive integers, where $T(n)=a T\left(\frac{n}{b}\right)+f(n)$ and $f(n)$ is posse valued function, and $a \geq 1$ and $b>1$, then:

1. $f(n) \in O\left(n^{\log _{b} a-\varepsilon}\right)$ for some const $\varepsilon>0$

$$
\Rightarrow T(n) \in \theta\left(n^{\log _{b} a}\right)
$$

2. $\quad f(n) \in \theta\left(n^{\log _{b} a}\right)$

$$
\Rightarrow T(n) \in P\left(n^{\log _{b} a} \lg n\right)
$$

3. $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some const $\varepsilon>0$,
regularity $\{$ AND \exists constant c s.t. $0<c<1$ and a $f(n / b)<c f(n)$ when n sufficiently large,

$$
\Rightarrow T(n) \in \theta(f(n))
$$

$$
\begin{aligned}
& \text { Eg: } T(n)=\underset{a^{\prime \prime}}{2 T\left(\frac{n}{(a)}\right)+n^{2}}{ }_{f(n)} \\
& n^{2} \in O\left(n^{\lg 2-\varepsilon}\right) \text { ? } \\
& \text { 7? } 0<c<1 \\
& \text { where } \\
& \in \theta(n) \text { ? } \quad 2\left(\left(\frac{n}{2}\right)^{2}\right)<c n^{2} \text {. } \\
& \in \Omega\left(n^{1+\varepsilon}\right) \\
& \text { Hence } T(n) \in O\left(n^{2}\right) \quad \frac{n^{2}}{2}<c n^{2} \\
& T(n)=2 T\left(\frac{n}{2}\right)+n_{\kappa} f(n) . \\
& c=\frac{1}{2} \text {. } \\
& \frac{n \in \frac{O\left(n^{1-\varepsilon}\right)}{\theta(n)}}{\Omega\left(n^{1+\varepsilon}\right)} \\
& \therefore T(n) \in \underset{\equiv}{\theta}(n \lg n) \text {, by MT part. } \\
& T(n)=2 T\left(\frac{n}{2}\right)+\lg n \\
& \lg n \stackrel{?}{\in} O\left(n^{1-\varepsilon}\right) \\
& \begin{array}{l}
\left.\theta(n) n^{1+\varepsilon}\right) \\
\Omega\left(n^{2}\right)
\end{array}
\end{aligned}
$$

$\lg n \in O\left(n^{1-\varepsilon}\right)$, for $\varepsilon=0.1$
\therefore By $m T$, case 1, $T(n) \in \Theta_{i}(n)$

