Big O, Big Omega, Theta [Recall Thm: log_n < n Vn>2 Warm-up: Vc>2 Prove $3n^2 + 4n \log n + 5 \in O(n^2)$ Proof: $1.3n^2$ $\leq 3n^2$ Fn $4n\log n \leq 4n^2$ 2: ∀n ≥1 3. $5 \le n^2$ $\forall \land \geq 3$ 4. $3n^2 + 4n\log n + 5 \le 8n^2$ 5. $3n^2 + 4n\log n + 5 \in O(n^2)$, as demoved by $c = \frac{3}{2}$, $n_{0} = \frac{3}{2}$ (≤~ th≥) $n \leq n^2 \forall n \geq 1$ Rule 1. Removal of Constant factors cf(n) ∈ O(f(n)) V constants c>0 Rule 2. Transitivity of Big O $F(n) \in O(q(n))$ AND $q(n) \in O(h(n))$ \implies f(n) $\in O(h(n))$ Proof: Suppose F(n) & O(g(n)) and $g(n) \in O(h(n))$.

Then
$$\exists c_{1}, n_{1}$$
 s.t. $f(n) \leq c_{1} \cdot g(n) \neq n \geq n_{1}$
and $\exists c_{2}, n_{2}$ s.t. $g(n) \leq c_{2} \cdot h(n) \neq n \geq n_{2}$.
 $\Rightarrow f(n) \leq c_{1} \cdot (c_{2} \cdot h(n)) \neq n \geq \max(n_{1}, n_{2})$
 $\Rightarrow f(n) \leq (c_{1} \cdot c_{2}) \cdot h(n) \neq n \geq \max(n_{1}, n_{2})$
 $\Rightarrow f(n) \in O(h(n) \text{ as demonstrated by}$
 $c = c_{1} \cdot c_{2}$, $n_{0} = \max(n_{1}, n_{2})$.

Rule #3. Strange-but-true log domination rule. $(\log n)^r \in O(n^s) \quad \forall r, \quad \forall s > 0.$ Eq $(\log n)^{100000} \in O(n^{0.00001})$

Rule #4. Polynomial Rule p(n) $\in O(q(n))$, when p(n), q(n) are polynomials in n of degree K and t respectively, K<t

Proof: Let
$$p(n) = a_{k}n^{k} + \dots + a_{n}n^{k} + a_{k} > 0$$

 $q(n) = b_{t}n^{t} + \dots + b_{n}n^{n}$. b_{t}
Observe $\lim_{n \to \infty} \frac{p(n)}{q(n)} = 0$
[Alt def^{h} : $f(n) \in O(g(n))$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$
 $n \to \infty$ for a constant c

Rule #5. Product Rule $f_{i}(n) \in O(g_{i}(n))$ and $\Rightarrow f_{i}(n) \cdot f_{i}(n) \in O(g_{i}(n) \cdot g_{2}(n))$ $f_{i}(n) \in O(g_{2}(n))$ Proof: pretty easy. Uses, and is analogous to, the fact that $a \leq b$ $C \leq d$ $a \cdot C \leq b \cdot d$

Rule #7. Reciprocal Rule $f(n) \in O(g(n)) \Rightarrow \frac{1}{g(n)} \in O(f(n))$ Proof: An exercise for the student.

Rule #8. Sum Rule if $f(n) \in O(g(n))$ and $f_2(n) \in O(g(n))$ $\implies f_1(n) + f_2(n) \in O(g(n))$

Proof: An exercise for the student. Rule #9 Less-Than Rule F(n) ≤ q(n) ≠ n ≥ no for some no \implies f(n) $\in O(q(n))$ Proof: An exercise for the student. A proof using the rules of Big-O Claim: $3n^2 \log n - 160 \log^3 n \in O(n^2 \lg n)$ Rationale Proof: Log Base Irrevelant logn E O(lgn) 1. CF Rule $2. \quad 3n^2 \in O(n^2)$ 1,2, Product Rule 3. $3n^2\log n \in O(n^2 \lg n)$ 4. $3n^{2}\log n - 160\log^{3} n \in O(3n^{2}\log n)$ By Less-Than Rule 5. $3n^{2}\log n - 160\log^{3} n \in O(n^{2}\lg n)$ 4,3 Transitivity, 4

When proving a Big O relation using the Rules - refer to The rule explicitly by name in Rationale - number the lines of your proof, and use the line numbers in your Rationale

Claim:
$$4n^2 - 1 \in O\left(\frac{3n^3}{1gn}\right)$$

Proof
1.
$$4n^{2} - 1 \in O(4n^{2})$$
 Less than rule
2. $lg n \in O(n)$ Less than rule, $n \ge 1$.
3. $\frac{1}{n} \in O(\frac{1}{lgn})$ 2, Recip Rule
4. $4n^{3} \in O(3n^{3})$ CF Rule
5. $\frac{4n^{3}}{n} \in O(\frac{3n^{3}}{lgn})$ 4,3 Product Rule.
6. $4n^{2} - 1 \in O(\frac{3n^{3}}{lgn})$ 1,5 Transitivity.

Theorem: If lim $\frac{f(n)}{q(n)}$ exists, then

$$f(n) \in O(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq c$$

for constant $c \geq 0$
if the limit exists
$$Proof:$$

$$f(n) \in O(g(n)) \Leftrightarrow \exists c, n_0 \text{ s.t. } f(n) \leq c \cdot g(n) \forall n \geq n_0$$

$$\Leftrightarrow \frac{f(n)}{g(n)} \leq c \quad \forall n \geq n_0$$

$$\iff \lim_{n \to \infty} \frac{f(n)}{g(n)} \leq C$$

Defining
$$\mathcal{Q}(q(n))$$

 $f(n) \in \mathcal{Q}(q(n))$ iff $\exists c, n_0$ such that
 $0 \leq c \cdot q(n) \leq f(n)$ $\forall n \geq n_0$
let's just consider pos^{ve}-valued functions

Claim: $f(n) \in \mathcal{Q}(g(n)) \iff g(n) \in O(f(n))$

Proof: $f(n) \in \mathcal{Q}(g(n)) \iff \exists c_i, n_i, s.t. (c \cdot g(n) \le f(n)) \forall n \ge n_i$ $\iff g(n) \le t_i \cdot f(n) \quad \forall n \ge n_i$ $\iff g(n) \in O(f(n)), as demoded$ by $c = t_i, n_o = n_i$ \square .

Def^h: $\Theta(g(n))$ If $F(n) \in O(g(n))$ and $g(n) \in O(f(n))$ then we say $f(n) \in \Theta(g(n))$. Theta

Claim: $3n^2 + 1 \in \Theta(n^2)$ Proof: 1. $3n^2 + 1 \in O(n^2)$ Poynomial rule 2. $n^2 \in O(3n^2 + 1)$ Poynomial rule. 3. $3n^2 + 1 \in \Theta(n^2)$ 1, 2 Defr Θ . The second rule is the second rule is the second rule.