Big O, Big Omega, Theta
Warm-up:
[Recall Thm: $\log _{c} n<n \quad \forall n \geqslant 2$] $\begin{aligned} & \forall c \geqslant 2]\end{aligned}$
Prove $3 n^{2}+4 n \log n+5 \in O\left(n^{2}\right)$
Proof:

1. $3 n^{2}$
2. $4 n \log n$

$$
\leqslant 3 n^{2} \quad \forall n
$$

3. $5 \leqslant n^{2} \quad \forall n \geqslant 3$
4. $3 n^{2}+4 n \log n+5 \leq 8 n^{2}$
5. $3 n^{2}+4 n \log n+5 \in O\left(n^{2}\right)$ as demoed by $c=8, n_{0}=\underline{3}$

$$
\begin{gathered}
1 \leq n \quad \forall n \geqslant 1 \\
n \leq n^{2} \quad \forall n \geqslant 1
\end{gathered}
$$

Rule 1. Removal of constant factors

$$
c f(n) \in O(f(n)) \quad \forall \text { constants } c>0
$$

Rule 2. Transitivity of Big

$$
\begin{aligned}
& f(n) \in O(g(n)) \text { AND } g(n) \in O(h(n)) \\
& \Longrightarrow f(n) \in O(h(n))
\end{aligned}
$$

Proof: Suppose $f(n) \in O(g(n))$ and

$$
g(n) \in O(n(n))
$$

$$
\begin{aligned}
& \text { Then } \exists c_{1}, n_{1} \text { s.t. } f(n) \leq c_{1} \cdot g(n) \forall n \geqslant n_{1} \\
& \text { and } \exists c_{2}, n_{2} \text { st. } g(n) \leq c_{2} \cdot h(n) \forall n \geqslant n_{2} . \\
& \Rightarrow f(n) \leq c_{1} \cdot\left(c_{2} \cdot h(n)\right) \forall n \geqslant \max \left(n_{1}, n_{2}\right) \\
& \Rightarrow f(n) \leq\left(c_{1} \cdot c_{2}\right) \cdot h(n) \quad \forall n \geqslant \underline{\max \left(n_{1}, n_{2}\right)}
\end{aligned}
$$

$\Rightarrow f(n) \in O(h(n)$ as demonstrated by

$$
c=\underline{c_{1} \cdot c_{2}}, n_{0}=\underline{\max \left(n_{1}, n_{2}\right)} \text {. }
$$

Rule \#3. Strange-but-true log domination rule.

$$
\begin{aligned}
& (\log n)^{r} \in O\left(n^{s}\right) \quad \forall r, \quad \forall s>0 . \\
& E g(\log n)^{100000} \in O\left(n^{0.00001}\right)
\end{aligned}
$$

Rule \#4. Polynomial Rule $p(n) \in O(q(n))$, when $p(n), q(n)$ are polynomials in n of degree K and t respectively, $k \leqslant t$

Proof: Let $p(n)=a_{k} n^{k}+\ldots .+\mathbb{a}_{0, n}^{a i s}$ are constants

$$
q(n)=b_{t} n^{t}+\ldots+b_{0} n^{0} \quad \begin{aligned}
& a_{k}> \\
& b_{t}
\end{aligned}
$$

Observe $\lim _{n \rightarrow \infty} \frac{p(n)}{q(n)}=0$
[Alt def: $f(n) \in O\left(g(n)\right.$) if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=C$, for a constant c

Rule \#5. Product Rule

$$
\begin{aligned}
& f_{1}(n) \in O\left(g_{1}(n)\right) \\
& \text { and } \\
& f_{2}(n) \in O\left(g_{2}(n)\right)
\end{aligned}
$$

Proof: pretty easy. Uses, and is analogous to,
the fact that $a \leqslant b$

$$
\frac{c \leqslant d}{a \cdot c \leqslant b \cdot d}
$$

Rule \#6. Log base is Irrelevant

$$
\begin{aligned}
& \log _{a} n \in O\left(\log _{b} n\right) \quad \forall a, b>1 \\
& \text { Proof: } \log _{a} n=\frac{\log _{b} n}{\log _{b} a} \quad \text { (Theorem) } \\
& \therefore \quad \log _{a} n=\frac{1}{\log _{b} a} \cdot \log _{b} n
\end{aligned}
$$

\therefore by constant factors rule

$$
\log _{a} n=c \cdot \log _{b} n \in O\left(\log _{b} n\right)
$$

Rule \#7. Reciprocal Rule

$$
f(n) \in O(g(n)) \Rightarrow \frac{1}{g(n)} \in O\left(\frac{1}{f(n)}\right)
$$

Proof: An exercise for the student.

Rule \#8. Sum Rule
if $f_{1}(n) \in O(g(n))$ and $f_{2}(n) \in O(g(n))$

$$
\Longrightarrow f_{1}(n)+f_{2}(n) \in O(g(n))
$$

Proof: An exercise for the student.

Rule \#9 Less-Than Rule

$$
\begin{aligned}
& f(n) \leq g(n) \quad \forall n \geqslant n_{0} \text { for some } n_{0} \\
& \Rightarrow f(n) \in O(g(n))
\end{aligned}
$$

Proof: An exercise for the student.

A proof using the rules of Big-O
Claim: $3 n^{2} \log n-160 \log ^{3} n \in O\left(n^{2} \lg n\right)$
Proof:

1. $\log n \in O(\lg n)$

Rationale
2. $\quad 3 n^{2} \in O\left(n^{2}\right)$

Log Base Irrevelant
3. $3 n^{2} \log n \in O\left(n^{2} \lg n\right) \quad 1,2$, Product Rule
4. $3 n^{2} \log n-160 \log _{9}^{3} n \in O\left(3 n^{2} \log n\right)$ By Less - Than Rule
5. $3 n^{2} \log n-160 \log ^{3} n \in O\left(n^{2} \lg n\right)$ 4,3 Transitivity).

When proving a Big O relation using the Rules

- refer to the rule explicitly by name in Rationale
- number the lines of your proof, and use the line numbers in your Rationale

Claim: $4 n^{2}-1 \in O\left(\frac{3 n^{3}}{\lg n}\right)$
Proof

1. $4 n^{2}-1 \in 0$

O $\left(4 n^{2}\right)$
Less than rule
2. $\lg n \in O(n)$ less-than rule, $n \geqslant 1$.
3. $\frac{1}{n} \in O\left(\frac{1}{\lg n}\right)$
2. Recip Rule
4. $4 n^{3} \in O\left(3 n^{3}\right) \quad C F$ Rule
5. $\frac{4 n^{3}}{n} \in O\left(\frac{3 n^{3}}{\lg n}\right)$ 4,3 Product Rule.
6. $4 n^{2}-1 \in O\left(\frac{3 n^{3}}{\lg n}\right)$ 1,5 Transitivity.

Theorem: If $\lim \frac{f(n)}{q(n)}$ exists, then

$$
f(n) \in O(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq c
$$

for constant $c \geqslant 0$ if the limit exists
Proof:

$$
\begin{aligned}
f(n) \in O(g(n)) & \Leftrightarrow \exists c, n_{0} \text { st. } f(n) \leq c \cdot g(n) \forall n \geqslant n_{0} \\
& \Leftrightarrow \frac{f(n)}{g(n)} \leq c \quad \forall n \geqslant n_{0} \\
& \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leq c \quad \text { R }
\end{aligned}
$$

Defn $\Omega(g(n))$
$f(n) \in \Omega(g(n))$ iff $\exists \begin{aligned} & \text { positive } \\ & c, n_{0}\end{aligned}$ such that

$$
0 \leq c \cdot g(n) \leq f(n) \quad \forall n \geqslant n_{0}
$$

\uparrow
let's just consider pos ${ }^{\text {re }}$-valued functions
claim: $f(n) \in \Omega(g(n)) \Longleftrightarrow g(n) \in O(f(n))$

Proof:

$$
\begin{aligned}
f(n) \in \Omega(g(n)) & \Leftrightarrow \exists c_{1}, n_{1} \text { st. } c \cdot g(n) \leqslant f(n) \forall n \geqslant n_{1} \\
\Leftrightarrow & g(n) \leqslant \frac{1}{c_{1}} \cdot f(n) \quad \forall n \geqslant n_{1} \\
\Leftrightarrow & g(n) \in O(f(n)] \text {, as demoed } \\
& \text { by } c=\frac{1}{c_{1}}, n_{0}=n_{1}
\end{aligned}
$$

Def: $\Theta(g(n))$
If $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$ then we say $f(n) \in \Theta_{T \text { Theta }}^{\theta}(g(n))$.

Claim: $3 n^{2}+1 \in \theta\left(n^{2}\right)$
Proof: 1. $3 n^{2}+1 \in O\left(n^{2}\right)$ Polynomial rule
2. $n^{2} \in O\left(3 n^{2}+1\right)$ polynomial rule.
3. $3 n^{2}+1 \in \theta\left(n^{2}\right) \quad 1,2$ Def n θ

