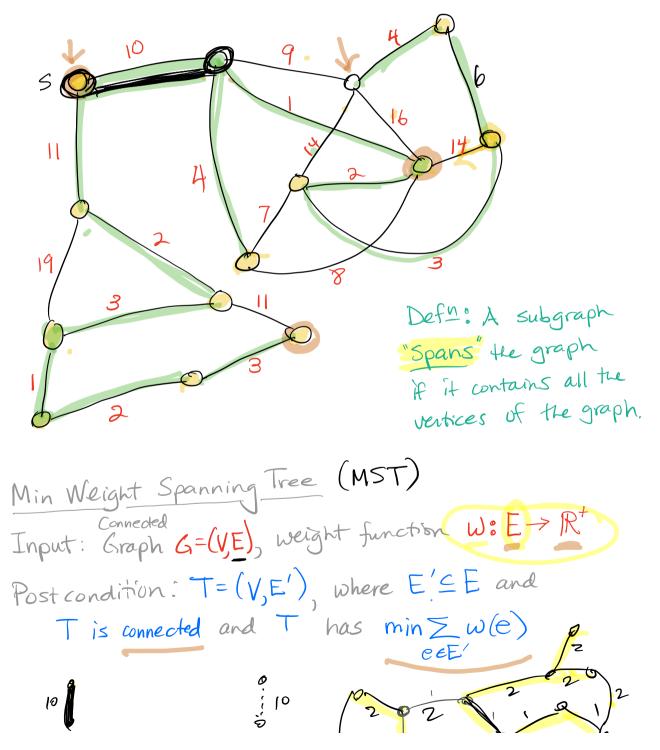
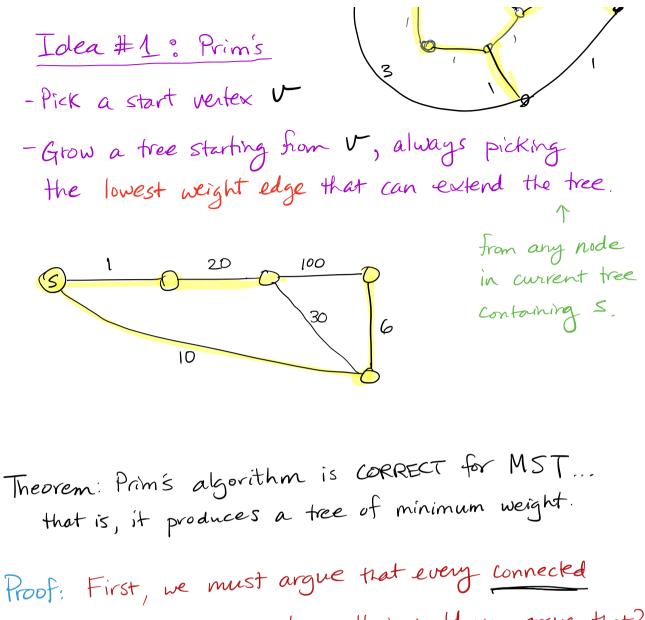
Algorithmic Approach #3: Greed Let's consider weighted undirected graphs. The weights here are on the edges.





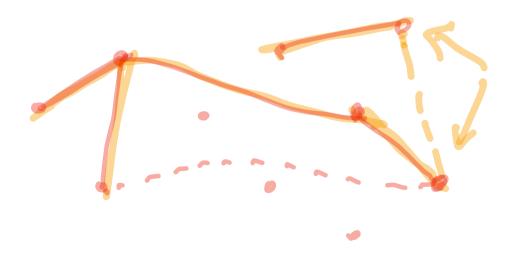
graph has a spanning tree. How would you argue that? Left as an exercise for the student. Given that we can prove that, we first define "promising" Defn: A tree T is promising if T is the Subgraph of some MST Topt of G.

Now let us consider a graph 6, and Prim's

Note: in a tree,
$$\exists ! 1$$
 path from v to s $\forall v$.
Suppose ALL the MSTs that extend $e, + ... tei
do Not contain e_{itil} (which joins vertex v to the
tree). Let Topt be one. MST
Consider the $v-s$ path in Topt ...
it must cross the "Frontier" using some
edge e_i , $e_i \notin \{e_1, e_2, ..., e_{itil}\}$
and $w(e_i) \ge w(e_{itil})$
Then Topt - $e_i + e_{itil}$ is also a spanning.
tree (think about it...)
... and it has weight no more than $w(T.pt)$
oo it is a MST,
and $\{e_1, e_2, ..., e_{itil}\}$ is promising $\{e_1, e_2, ..., e_{itil}\}$$

Thus we have shown that all the edge sets Ze, ez, ..., e: } are promising, for o≤ù<n. So ze, ez, ..., en-13 is promising.

i.e. T is promising, and T is a spanning tree.
po T is a MST.
$$M$$



graph 61,62;

Bl. read-graph () G 2

